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PREFACE 
This is the math book I wish I had when I was in high school and college. If you were like 

me, by the time you got to high school or college, you would have learned a considerable 

amount of math, mostly algebra. However, you may feel that what you have learned is a 

bunch of jumbled up ideas and a myriad of ways to manipulate numbers and symbols. To 

make matters worse, you may feel that you could hardly explain why you ever learned 

those things, or how one thing you learned is related to another. That’s how I felt about 

math for a very long time. If you feel the same way, this book will give you an opportunity 

to take a fresh look at what you have learned, and re-learn previously learned concepts 

(and more) in a new light — one that will develop your intuition and help you see how 

everything is connected to serve a common purpose in the real world. That intuition will 

build a solid algebraic foundation to help you pursue other areas like Calculus, Computer 

Science, Physics, and Engineering.  

 

This book attempts to present a narrative of the function dynasty: how they came to be, 

their purpose in life, what they have in common, what they consume and produce, their 

kith and kin, how they appear in various forms in disguise, and how everything we learn in 

algebra is related to them in one way or the other.  If you are a student who is trying to 

make sense of what you are learning, or a parent or an educator looking for ways to explain 

math to kids in a cohesive and intuitive way, this book will give you many fresh ideas. It 

offers a lot of analogies, figures, visual models, graphs, real-world examples, and gratuitous 

explanations to help anyone connect with the fundamentals of math. Instead of formalism, 

this book places emphasis on developing intuition. 

 

There is another unique feature of this book. It tries to explain the connection between 

math and computer programming with numerous examples of very short computer 

routines that correspond to their mathematical counterparts. These routines are written in 

JavaScript-like syntax to help anyone digest them easily. Computer science students and 

anyone who is even remotely interested in computer programming will find the connection 

between math and computer programming quite enlightening. You will soon realize that 

understanding one helps you better understand the other. Similarly, this book should help 

you better understand models used in many other scientific disciplines.  

 

Finally, I should also mention what this book is not. This is not a textbook. This is not a test 

preparation guide.  This is not a cheat sheet. This book was written to serve one purpose — 

to develop your intuition and help you see the underlying connections between different, 

seemingly unrelated math concepts. That understanding will allow you to appreciate math 

as a real-world tool, the same way engineers and scientists do. There is no guarantee that 
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this book will improve your test scores. On rare occasions, it might lower your scores. 

Other side effects may include nausea, dizziness, and allergic reactions to dry humor.  If 

symptoms persist, you should immediately stop reading this book and read a standard text 

book. 

 

Ruchira Sasanka 
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SECTION I: FUNDAMENTALS 
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1 BUILDING A RELATIONSHIP: BROUGHT TO YOU BY FUNCTIONS 

Chapter Overview: This chapter introduces you to mathematical relations and functions, 

the basic modeling tool in math, and describes the fundamental properties common to all 

of them. We will start with basics of function notation, function definition, evaluation, and 

visualization. Then we will explore how functions are related to operators and how we can 

use function composition to build more complex models using simpler models. Finally, we 

will see how a common parameter can be used to model more complicated relationships.  

Why do we study math? What’s the meaning of all this number crunching and formula 

juggling we learn in school? Although it may sound like a deep philosophical question that 

needs lots of soul searching, the answer is simpler than you think. 

With math, we try to build various models about the world we live in.  

“But”, you may object, “that looks like a really difficult thing that requires a lot of expertise”. 

Not so! It is much easier than you think. 

Let’s start small. Let’s start with your dog.  

 

 
 

Let’s say you realize that if you feed your dog some amount of dogfood a day, she produces 

half that amount of poop (in weight) the next morning. For instance, if you give her 6 

ounces1 of dogfood, she poops 3 ounces (sometimes, don’t you wonder whether she poops 

more than what she eats!) 

 
1 This book refers to units like ounces, pounds, and feet that are customarily used in the US. You can 
substitute them with any corresponding metric unit such as grams, kilograms, and meters as appropriate. 

Modeling your pooch with functions 
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This is an example of a real-world relationship. The relationship is between the weight of 

dogfood your dog eats and the weight of poop she produces. You can simply model this as: 

Weight of poop = Weight of dogfood / 2 

Congratulations! You have built a “mathematical model”, also known as a “mathematical 

relation”. That is, a relationship between input and output.  

 

 

Now you can test whether your mathematical model is actually true by observing the 

amount of dogfood (input) and poop (output) over many days. This is one use of a 

mathematical model. It allows us to test the validity of a theory (hypothesis) you have 

about the real world. In addition, from your mathematical model, you know that if you 

increase the amount of dogfood (input) by 1 ounce, the amount of poop (output) will 

increase by half an ounce. So, you can use your mathematical model to predict what would 

happen when you change the input.  That’s another use of a mathematical model.  

 

1.1 Modeling with Math 

The purpose of math is to develop mathematical models for various relationships that are 

important to us. A couple of such famous relationships, thanks to Newton, are: 

  Force   =   Mass ∗ Acceleration 

Gravitational Force
Between 2 Objects

    ∝     
Mass of Object 1  ∗    Mass of Object 2

Square of Distance Between 2 Objects
 

 
If you think your mathematical model about your dog was rather silly, consider this: you 

used the same math construct as Newton did! Of course, scientists can use Newton’s 

mathematical models to send rockets to the Moon, but that’s beside the point.  

 

 
 

Math is the tool we use to understand the physical world around us. Just as an architect 

builds a miniature model of a building to understand the real one he is about to build, 

mathematicians, scientists, and engineers build “mathematical models” (or mathematical 

relationships) of the physical world. 

 

We use mathematical relationships to model the real world! 

A mathematical relation describes a relationship between input and output 
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1.2 Relationship Guide: How to Build a Relationship (Tip: Use a Function) 

A relationship relates two (or more) things. When it comes to a mathematical relationship, 

the relationship is between “inputs” and “outputs” — i.e., how output is made from given 

input.  

A mathematical relationship that produces only one output for a given input is called a 

mathematical function (or simply a function). In other words, a function cannot produce 

two outputs for the same input. If we want to model two outputs, we need two functions. 

Simple as that. 

 

 

 

An Architects’ Model vs. Mathematician’s Model 

Bad function! No two outputs! 
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1.3 Visual Model (Mental Model) For a Function 

It is quite helpful to have an intuitive visual model (or a mental model) of a function. The 

figure below shows such an intuitive Visual Model. In figure (a) below, we look at a 

function as a recipe that calculates output from input. Another intuitive way to look at a 

function is as a machine, as given in figure (b).  The machine uses some operation to 

produce output from input. Figure (c) shows an actual example of a function, which 

doubles its input. 

 

To summarize, a function describes a “recipe” or a “machine” for creating an output from 

given input(s) — i.e., the output is a “function of” the given input(s).  Further, we usually 

give each function a distinct name, in order to identify it, as shown above. We will be using 

this Visual Model quite extensively in this book, so pay extra attention to it.  

 

 
   
As an example, figure (c) above shows a function (recipe) that doubles its input. The output 

is just twice, or double, the input. We have given this function a name — doubleInput.  

Some people like to think of a function as an “action” or an “operation”. A function performs 

some “action” on the input to produce an output. Since we use a verb to describe an action, 

some find it more intuitive to use a verb in the function name to describe the action the 

function performs. For instance, we called the above function “doubleInput” with the verb 

“double” to indicate that this function performs the action of doubling the input it receives. 

This is not a hard and fast rule, but we will try to use it whenever it makes things clearer.  

We will look at several example functions in the next section. For each example, take extra 

care to understand the Visual Model.  

A function describes a “recipe” or a “machine” for creating an output from input(s) 
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1.4 Meet the Everyday Functions You Hardly Think About 

There are many everyday experiences that can be modeled as functions. These functions 

are hiding in plain sight because you hardly ever look at these as functions.  

Think about a magnifier. It magnifies an object (input) and produces an output image 

(which you can see). Therefore, you can look at (or model) the magnifier as a function2. The 

figure below shows a magnifier and its Visual Model.  

 

The above example will make you realize that you can think of your eye as a function. 

Similarly, do you see your eye-glasses and camera as functions? All of them use lenses to 

create an image (output) of an object (input). The eye produces the image (output) on the 

retina while the camera produces its image (output) on a film or an image sensor.  

Even you can think of your bathroom mirror as a function. It creates a 

reflection or image (output) of the same size as objects in front of it 

(input), with one caveat; it switches left and right. Can you create a 

Visual Model for the mirror?  

We discussed how we should look at a function as a recipe. The 

converse is also true. We can look at a recipe as a function. You take 1 

pound of flour (input), ½ pound of sugar (input), 6 eggs (input), and 

1 packet of yeast (input), and you can make a cake (output) of 1 pound. I hope. I didn’t say 

it would be edible! Notice that this function has many inputs and produces one output 

(cake).  

 
2 More precisely we can model magnification (i.e., the size of resulting image as a function of the size of input 
object). For discussion in this section, we will ignore such subtleties to convey the larger point of being able to 
find functions everywhere.  
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Let’s look at some machines that can be modeled as functions. How 

about the ice maker in your fridge? You put water in and get ice out. 

How about the electric kettle in your kitchen, or the water heater in 

your house? You put water in and get hot water out. Similarly, you put 

coffee nuts into your coffee grinder as input and get ground coffee as 

output. If you put strawberries, milk, and sugar as inputs into a 

blender, you can get strawberry milkshake as output. If you put 

potatoes into an oven as input, you can get baked potatoes as output for dinner. In each of 

these cases, the kettle, the water heater, the coffee grinder, the blender, and the oven can 

be modeled as a function producing output from input.   

 

 
   
I think you get the point now. Functions are not some exotic mathematical concept. They 

live among us all, but we hardly ever notice them. Poor functions!  

1.5 Function Notation 

The Visual Model of a function is an intuitive way to define a function, 

but we use text-based notation in math. If we want to specify a 

relationship, where the output is made by doubling the input, we can 

simply write:  

 output = 2 ∗ input    

or 

 y  = 2 ∗ x 

where x is the input and y is the output.   

Note that symbols like x and y are just names we use to represent input and output. They 

are also called variables since they are names for quantities that can vary. The input 

variable x is also called the independent variable because it can freely take any value and 

the output variable y is usually called the dependent variable because it depends on the 

input.  

Consider the above relationship “output = 2 * input”. This relationship is also called an 

equation, because it is expressed as an equality, using an equal sign.  As its Visual Model 

shows, there is no “recipe name”, or “function name” given to it; yet, it is a relationship 

between input and output. This works well for many modeling activities, but not always.   

We encounter functions in our everyday lives! 
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Imagine we had two relationships, one for doubling and one for tripling. Each time we want 

to refer to one, we don’t want to say “the one that doubles input”, and “the one that triples 

input”, and so on.  That is clumsy. Fortunately, this problem is quite easy to solve. If you had 

two dogs, you wouldn’t call them “the one with the fluffy coat” and “the one with the pointy 

ears”. You would just give them two names — Fluffy and Sparky. We do the same with 

functions, and that’s why our Visual Model has a “name tag” called “recipe name” (function 

name). We can call a function that doubles its input “doubleInput”. If we have a function 

that squares its input, we can call it “squareInput”. That’s pretty easy to understand.  

Now that we have a name for the function, we have to define the recipe. Defining the recipe 

is called, you guessed it, “function definition”. Let’s see how we do this for our 

doubleInput function. It’s really easy. We would write it as: 

doubleInput (input) = 2 ∗ input 

The following picture names each component of this input-output relationship, with its 

corresponding Visual Model on the right.  

 

The above function definition has the same three things we have been talking about: 

(1) input 

(2) recipe 

(3) output 

First, let’s look at the input. Input is represented by a variable; in this case, we have named 

it ‘input’. If we want, we can call input anything we like — e.g., ‘in’, ‘x’, or ‘t’. It doesn’t 

matter, as long as we give the input a name. 

Next, we have the recipe. It’s how we make output from the input. In this case, we just 

multiply input by two. Note that the recipe always goes on the right-hand side of the equal 

sign, in a function definition. 

Last, we have the output, which appears on the left-hand side. Here, we have something 

new. Instead of having a simple variable name like “y”, or “out”, we have: 

  doubleInput (input)  
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This consists of: 

▪ Function name (i.e., doubleInput) 

▪ Input variable within parenthesis (i.e., input) 

Why do we do this? Of course, a function needs a name, just as our dogs “Fluffy” and 

“Sparky” needed names. Now, rather than introducing a completely unrelated variable 

name like “y”, what if we could come up with a name for the output using the function name 

itself? That’s exactly what we do. We create a name for the output, using the name of the 

function and the name of the input variable. So, doubleInput(input) means the following: 

it’s the output of the function named doubleInput, using the input named “input”.  

It is important to note that we can use any name for the input variable and to name the 

function. For example, we can write the above function definition as: 

▪ doubleInput(in) = 2 ∗ in 

▪ doubleInput(x) = 2 ∗ x 

▪  f (x) = 2x 

All of the above definitions describe the same recipe but use different names to do so. 

Carefully, study how the output is named in each of those definitions. Just to drive the point 

home one more time, you should look at the last definition f (x) = 2x, as an input-output 

relationship. In this case, the input is named x, the recipe is 2∗x, and the output is named 

f (x) to indicate that it’s the output of function f for input value x.  Note that the output3 

term f (x) is pronounced as “f of x”. This definition and its Visual Model are given below.   

 

 

If you find this convention of naming output of a function rather strange, here is an analogy 

that will make it clear. Think about the grater you have in your kitchen. If you were to grate 

cheese with it, you call the output, “grated cheese”. If you were to grate carrots, you would 

 
3 Traditionally, notation f (x) is used (or rather abused) both as the name of function and the output of 
function f  at input x, based on the context. Here, we use the latter meaning for better intuition.   
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call the output “grated carrots”. The output name is a combination of the action or function 

you do (grating) and the input (cheese or carrots). If you want another example, think 

about “grilled chicken”, “grilled salmon”, and “grilled veggies”. Again, the output is a 

combination of the function “grilling” and the input (chicken, salmon, veggies, etc.). 

Similarly, we use f (x) to name the output of the function f for input x. Who thought the 

output of functions could be named like fast food?   

 

 
Before we move on, we should learn two words that are often useful in describing the 

recipe of a function definition. The recipe of a function (i.e., the right-hand side of function 

definition), is an expression. What’s an expression? It’s a sum of terms? OK, what’s a term, 

then? A product or a ratio of constants and variables is called a term. For instance, 2x, -5, 

5x2, 61, 53, ½, and x3/2, are all terms. Therefore, a sum of those terms, like 5x2 − 2x + 6, is 

an expression with 3 terms. You can look at term 2x as an expression with just 1 term. 

If you want to look at function definitions from a different angle, looking at how we define 

functions in a typical programming language should fascinate you. The computer code for 

the function “doubleInput” is given below. It is strongly advised that you study this code, 

even if you are new to computer programming. You should immediately see the similarities 

between the function definition, our Visual Model, and computer code.  

Computer code starts with the keyword “function” to say that this is a function definition. 

Then, it specifies the name of the function, “doubleInput”, followed by the input variables 

(“input”, in this case). Then, within curly braces, we have the body or recipe, which tells us 

how the output gets made from the input. You can see that the output is calculated by 

multiplying the input by two. Then, there is one additional “return” statement, which 

indicates that the function outputs (or “returns”) the variable named “output”.  That’s it! 

 

 
 
Depending on the specific programming language, you may need additional keywords to 

specify that “input” and “output” are variables. We will omit such syntax for clarity. Our 

function doubleInput( input )  
{ 
 output = 2 * input      

 return output 
} 
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objective is to see the fundamental connections between math and programming, 

compared to learning the syntax of a specific programming language.  

 

When defining a function, we said that the names of the input and output variables do not 

matter. This is also true for computer code. To illustrate this point, the following figure 

shows the same doubleInput function, but with the input variable named “number” and the 

output variable named “result”. Carefully compare this with the previous version. The 

actual operation that the function performs did not change at all. Only the names of the 

input and output changed.  

 

 
 
This example helps you appreciate the connection between math and computer 

programming. This connection will become more evident as we go on.  

1.5.1 LAZY MATHEMATICIANS: CONCISE NOTATION 

In our previous examples, we defined our functions and input/output 

variables with descriptive names like “doubleInput”, “input”, and “output”. 

However, mathematicians, who do not care much for writing long names, 

would like to give single letter names to functions and variables. For 

example, the function definition we wrote as: 

 doubleInput (input)  = 2 ∗ input  

is often written as: 

  f (x)  = 2x 

As you can see, the recipe is the same. Only the names are shortened to single letters.  

Instead of naming the function “doubleInput”, the letter “f ” is used as the function name. 

Instead of using the variable name “input”, the letter “x” is used.  

In contrast, computer scientists advocate for using long, descriptive names. Short names 

could be challenging to many students who can’t make much sense of the sea of letters they 

see on a page. However, those who text “cu @ 9 ttyl” to mean “see you at 9, talk to you 

later”, don’t have a right to complain.  

function doubleInput( number )  
{ 
 result = 2 * number      

 return result 
} 
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Kidding aside, we need to get accustomed to the mathematical notation. To help with this, 

in the first few chapters, this book will present both forms whenever possible.  

 

 

1.6 Function Definition vs. Function Evaluation (Function Call) 

In Section 1.5, we discussed the “definition” of a function. For instance, f (x) = 2x is a 

function definition. Remember, a function definition has a left and right side, with the 

recipe on the right and output on the left, with an equal sign in the middle.  

In contrast, the Visual Model on the right shows a function 

evaluation for a specific input value (i.e., in this case, the input is a 

constant). Here, the specific value, 3, is used as the input to the 

function and hence the function outputs 6 (i.e., 2∗3). The evaluation 

of the function (i.e., finding the specific output value for a specific 

input) is written as: 

 

 doubleInput( 3 )    [ evaluate function doubleInput with 3 as the input ] 

The computer code for this is given below. The text following // are just comments. The 

print statement prints number 6. Do you see the similarity between math and computer 

code?  
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Since a function evaluates to a single output value, it can be used as any other term to form 

expressions. For instance, the following expression results in 30, if function f is defined 

as  f (x) = 2x, because  f (3) evaluates to 6 (i.e., 2∗3).  

  f (3) ∗ 5     [ this evaluates to 30, if  f (x) = 2x ] 

 

The following figure shows the same expression evaluation with computer code. There, we 

multiply the value of doubleInput(3) by five. As we saw above, doubleInput(3) evaluates to 

value 6. Then, we multiply this result by 5 and assign it to the variable y. Therefore, the 

print statement prints the number 30. 

 

 

 
If you are still unsure about the difference between the function definition and evaluation, 

here is an analogy. Think of an electric kettle. It can be modeled by a function. You put cold 

water in (input) and after a while, you get boiling water (output). Some electrical engineer 

came up with instructions (recipe) for building that kettle. That’s the definition.  A factory 

could manufacture the kettle according to that recipe from the definition. Once the kettle is 

made, we don’t deal with the definition anymore. A consumer buys the kettle and “uses” it 

— puts cold water in and gets boiling water out.  That “use” of a function is called 

“evaluation”.  

 
It is very important to understand the difference between function definition and function 

evaluation. Function definition gives a recipe for producing an output for any given input 

(input and output are variables). Function evaluation produces one specific output for one 

specific input (input and output are constant).  

y = doubleInput( 3 ) // call doubleInput with 3 as input 

print( y )   // prints 6 

 

y = doubleInput( 3 ) * 5 

print( y )           // prints 30 

f (3) represents the output value of function f for the input value 3 
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As another example of function evaluation, if we plug in constant ‘a’ as the 

input to function ‘f ’, the output value can be represented by f (a), as shown 

in the Visual Model.  This is analogous to evaluating  f (3).  

 

 
 

 
This notation nicely jibes with the notation we used for function definition. 

We saw that if we use 3 as the input for f, then we can represent the output 

by f (3). If we use constant ‘a’ as the input, the output can be represented by 

‘f (a)’.  What happens if we use variable ‘x’ as the input? We can represent the 

output by  f (x). That is, f (x) is the output value that comes out of the function 

for input x. Rather than introducing another variable (e.g., y) to represent 

the output, we can use f (x) itself to represent the output of function f, when input is x. This 

further clarifies why we used f (x) to represent output in function definition.  

 

 

1.7 Taking Selfies: Visualizing Functions  

A picture is worth thousand words. Given that math expressions are really concise, a 

picture is worth a thousand math symbols when it comes to developing intuition.  

 

A function can be visualized by drawing its graph — i.e., for each input value, we plot the 

corresponding output value. However, it is important to know the difference between a 

function and its graph. Your selfie is not same as you. Similarly, a graph is a mere 

visualization of a function. A function represents a mathematical relationship between 

inputs and output. 

 

The following figure shows the graph of function, f (x) = 2x, which is 

shown in the Visual Model. This function is similar to doubleInput, but 

here, we use the shorter name f and input variable x to save space on the 

graph.  

 

The graph can be drawn by calculating the output for each input. For 

instance, for an input value of 6, the output is 12, as shown on the graph. 

Also, note that we can represent this output value with expression f (6), as 

 f (x) represents the output value of function f for the input value x 

f (a) represents the output value of function f  for input value a 
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we saw in Section 1.6. Recall that f (6) indicates the function evaluation (output), when x is 

6. Similarly, the output for input -8 is f (-8), which is equal to -16 as shown on the graph. 

 

 
Each point on the horizontal axis represents an input value, x, for the function. The values 

on the vertical axis shows f (x), the output value, corresponding to an input value of x. 

From the graph of f (x) = 2x, we can immediately see that the relationship between the 

output and input is linear (i.e., a line). That is, if we increase the input value by some 

increment, the output also increases by a constant multiple of that increment. For 

instance,  f (6) is 12. If we increase the input by 3 (to 9), the output increases by 2∗3 = 6 (to 

18). You can verify that by evaluating  f (9), which is 18.  

 

 
   
For the above graph, the input variable x takes values from -10 to +10. The set of input 

values a function accepts is also known as the domain of the function.  The output of the 

above graph takes values from -20 to +20.  The set of output values a function produces 

(for a given set of inputs) is known as the range of the function.  

1.8 The More the Merrier:  Functions with More Than One Input 

Many real-world models need more than just one input. Think 

about a cake recipe. It has multiple ingredients (inputs). The Visual 

Model to the right shows another example: a mixer that accepts 

flour and sugar to produce a mixture. If we input 2 pounds of flour 

and 1 pond of sugar, we get a mixture weighing 3 pounds. Here is 

A graph of a function helps us visualize the relationship between input and output 
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the function definition of this mixer, where all inputs and outputs are measured using the 

same unit (e.g., in pounds or kilograms): 

 
mix( flour, sugar ) = flour + sugar 

Here is the same definition using more concise notation: 

g (x, y) = x + y 

The above function g takes in two inputs, x and y. The recipe is just to 

add them together. The notation g (x, y) says that g is a function that 

accepts two inputs, x and y. Expression g (x, y) represents the output, 

the same way f (x) represents the output of function f with only one 

input, x.  The above Visual Model captures this definition.  

The same function with more descriptive names can be defined as: 

 addTwoInputs (input1, input2) = input1 + input2.  

The computer code for this function, with more descriptive names, is given below, followed 

by a call to the function (evaluation). 

 

 
 
Here is a quick quiz. What does doubleInput(5) + addTwoInputs(3, 2) evaluate to?  

The figure below shows the graph of  f (x) = x + y, which is same as function addTwoInputs. 

As you can see, the graph is a surface (a plane in this case). This is because we need two 

axes to represent both inputs x and y, and a third axis to represent the output value at each 

(x, y) point. The output value of function f at point (x, y) is represented as f (x, y).  

 

function addTwoInputs( input1, input2 )  
{ 
 output = input1 + input2      

 return output 
} 

y = addTwoInputs( 5,3 )      // add 5 and 3 

print( y )                   // prints 8 
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As the number of inputs increase, it becomes harder to visualize functions. We will see such 

examples in Section 7.12.1. As an exercise, can you draw a Visual Model to represent the 

magnification of a magnifier? Hint: Magnification depends on (i) focal length of the 

magnifier, and (ii) the distance between the magnifier and the object. Can you write 

computer code for your model? 

You may notice that many algebra courses and textbooks treat functions with multiple 

inputs as an advanced topic. However, even a simple real-world model like F = m a is a 

function of two inputs. For the same reason, most functions you write with computer code 

have multiple inputs. Therefore, we treat functions with multiple inputs as fundamental. In 

fact, the next section is a prime example of functions with multiple inputs. 

1.9 Operators Are People, err…, Functions, Too! 

You may never have thought of arithmetic operators like addition, 

subtraction, multiplication as functions. But they definitely fit the bill as 

indicated by function addTwoInputs and function g shown with the 

Visual Model. 

Function g and function addTwoInputs represent the addition 

operation. They take two inputs and produce an output, which is the 

sum of two inputs. Similarly, we can define the multiplication operation 

with another function as: 
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h (x, y) = x ∗ y 

or with more readable names as: 

multiplyTwoInputs (number1, number2) = number1 ∗ number2 

 

The computer code for multiplyTwoInputs is given below: 

 

 
 

As you can see, multiplyTwoInputs(5, 3) should evaluate to 15.  We get the same result 

for h (5, 3).  

Can you draw the Visual Models and write computer code for the subtraction and division 
operators? Can you do the same for the negation operation (i.e., multiply by -1), which has 
only one input ? 

 

 
 

If you happened to treat operators as some strange things, now you know better. They are 

functions too. Isn’t it nice to have one unifying concept that can unify all of these seemingly 

unrelated concepts?  

1.10 It’s Complicated:  Building Complex Relationships  

Complex things are often built by combining simpler things. You cannot build a house with 

just one material; you need to combine multiple materials and objects. Similarly, a simple 

function cannot represent complex real-world relationships. Don’t worry! There is a 

solution. We can combine simple functions to build elaborate models. This is called 

function composition. 

1.10.1 USING FUNCTION COMPOSITION TO BUILD COMPLEX MODELS 

Let’s look at a few real-world examples. We discussed how the lens in your eye can be 

modeled as a function. It produces an image (output) of the objects (input) in front of you 

on the retina. But sometimes, this function is not sufficient. This is what happens when you 

develop near-sightedness or far-sightedness. Your eye cannot create a focused image of 

function multiplyTwoInputs( number1, number2 )  
{ 
 output = number1 * number2      

 return output 
} 

Operators are functions too! 
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objects that are too far away or too close. So, what do you do? You wear eye-glasses or 

contact lenses. We saw that glasses (or contacts) can be represented as yet another 

function, because they also produce an image (output) from input objects. What are we 

doing in this case? We are feeding the output of one function (glasses) into the input of the 

other (eye). In other words, we are combining (composing) two functions together to build 

a more complex function. 

 

 
 
The above figure illustrates the general concept of function composition. As you can see, 

function composition can be viewed as feeding in the output of one function (top function) 

into the input of another function (bottom function). Figure (a) shows the general case of 

function composition. Figure (b) illustrates the eye-glass example, where the output of eye-

glasses is being fed into the input of the eye. 

 

 
 
Figure (c) shows an algebraic example, where function doubleInput is feeding in its output 

into function squareInput. These functions are defined as: 

 doubleInput(x) = 2x   [ multiply input by 2 ] 

 squareInput(x) = x ∗ x  [ multiply input by itself ] 

We can compose more complex functions using simpler functions 
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Figure (c) shows that if we feed in x as the input to top function, we 

get a new function, 4x2, out of the bottom function. Why? When we 

feed in x to doubleInput, the top function, its output is 2x. This 

becomes the input to squareInput, which squares 2x, giving 4x2 as 

the output of the combined function.  Therefore, the recipe for the 

combined function, named ‘composed’, is given by 

composed(x) = 4x2 

You can quickly verify this with a sample input. If input x is 3, doubleInput outputs 6; with 

that as input, squareInput produces 36. Equivalently, composed(3) produces 4*3*3, which 

is 36.  

Algebraically, you can find the composed function using a similar process. To find the 

output of the combined function, composed(x), we have to feed in doubleInput(x) as the 

input to squareInput(x):  

composed(x) = squareInput( doubleInput(x) )   (1) 

   = squareInput ( 2x )    [ 2x is the output of doubleInput(x) ] 

   = 2x ∗ 2x   [ squareInput multiplies input by itself ] 

   = 4x2 

Expression doubleInput(x) represents the output of doubleInput, when x is the input. If the 

input is x, instead of doubleInput(x) we can write 2x. Then we feed that 2x into 

squareInput producing 4x2. 

Take another look at the Visual Model in Figure (c) and compare it with the algebraic 

manipulation. Both achieve the same result. One very important thing to notice is that we 

can represent the composition of two functions with one function (called composed(x)). As 

a result, we created a more complex function using two simpler functions.  

To get an even better understanding of this, let’s look at computer code. The definitions for 

doubleInput and squareInput should be really clear to you by now. The only new function 

is the composed function. There, to calculate the output, first you call (evaluate) 

doubleInput function and use its output as the input to the squareInput function. This is 

exactly what we did algebraically in equation (1) above.  
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If it is still difficult for you to wrap your head around equation (1), we can write the same 

equation in two steps as given below. There, we first call the doubleInput function with 

number1 as the input and assign the output to variable output1. Then, we use output1 as 

the input to the squareInput function. Now, can you see that both versions achieve the 

same end result? 

 

 
 

The algebraic formulation equivalent to the new composed function in computer code is: 

 y  = doubleInput(x)  

             composed(x) = squareInput(y) 

 

Can you clearly see the similarity between the computer code and the algebraic form? 

Being able to see both forms leads to a better understanding. This is the fundamental 

reason that this book provides both forms. Moreover, it shows you the inherent connection 

between math and computer programming. 

 

 
 

function doubleInput( number1 )  
{ 
 output = 2 * number1      

 return output 
} 

function squareInput( number1 )  
{ 
 output = number1 * number1      

 return output 
} 

function composed( number1 )  
{ 
 output = squareInput( doubleInput( number1 ) ) 

 return output 
} 

function composed( number1 )  
{ 
 output1 = doubleInput( number1 ) 

output = squareInput( output1 ) 

 return output 
} 
 

Function composition is feeding the output of one function into another’s input 
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In figure(c), doubleInput feeds into the squareInput function. What if we change the order? 

What if squareInput was at top, feeding into doubleInput? That case is shown in figure (d) 

above. Do the two composed functions in figure (c) and figure (d) produce the same 

output? No! If we plug in x into composed function in figure (d), we get the output 2x2, not 

4x2 (I have shown (d) with input ‘in’ to show you that the name of the input does not 

matter. What matters is the recipe). 

This illustrates a property of function composition with far-reaching consequences. 

Mathematically, we say “function composition is not commutative”. What does that mean in 

plain English? If you take scalar multiplication as a function, then 3∗5 is the same as 5∗3. 

That is, the order of inputs doesn’t matter for scalar multiplication. We can switch input1 

and input2 of multiplyTwoInputs function (multiplication operator). However, we cannot 

do the same with function composition. For instance, squareInput( doubleInput(x) ) is not 

the same as doubleInput( squareInput(x) ). In general, f ( g (x) ) is not equal to g( f (x) ), 

where f and g are any two functions. 

If you think about it a little bit using a real-world example, you will clearly see why this is 

the case. In figure (b) we used eye-glasses as a function. Similarly, we know that binoculars 

are a function (they magnify input). Say you are wearing glasses and looking through 

binoculars. What happens if you switch the order of the eye glasses and binoculars, so that 

the binoculars are closer to your eye and glasses are in front of the binoculars? You will not 

see anything! Why? Because in function composition, order matters. More technically, 

function composition is non-commutative.  

 

 
 
You can carry out function composition repeatedly. For instance, when you are wearing eye 

glasses, and looking through binoculars, with the aid of your eyes, there are three functions 

involved — the binoculars, your glasses, and your eyes. The image that falls on your retina 

is a composition of those three functions — binoculars, glasses, and the lens of the eye, in 

that order. Algebraically, we can do the same.  

You may be wondering why we are so obsessed with function composition. As we saw with 

eye-glasses example, function composition is useful to build more complex models using 

simpler models. Remember, the whole point of math is to model the real world. Combining 

simpler models to build more complex models is a necessary and invaluable tool. Function 

composition combines existing recipes (functions) to create new recipes. 

 

 

In function composition, order matters (function composition is non-commutative) 

Function composition is the tool for creating new functions from existing functions 
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Function composition like g( f (x) ) shows that functions can also accept other functions as 

inputs and produce new functions as output. How do functions do that? Accepting the 

function f as input is similar to accepting the whole range of values produced by f. For each 

of those values produced by f, function g can produce a new output.  

To summarize, functions can accept two types of objects as input and can produce two 

types of outputs as objects. The two types of inputs are: 

(1) Numbers/Variables (produces a number/variable as output) 

(2) Functions   (produces a new function as output) 

When a function accepts another function as input, it produces a new function as output 

and this process is called function composition. Thus, we use function composition to 

create new functions.  

 

 
 
Function composition gives rise to its reverse operation, function decomposition, which 

is equally valuable. This allows us to break down a more complex operation into simpler 

operations, which helps both understanding and computation. Function composition and 

decomposition are heavily used in computer programming for this very reason. In 

programming, large functions are often decomposed into smaller functions. Then, we call 

one function, get its output, and use that as the input to call another function (as you saw in 

the computer code for the function “composed”). Programmers do this every day without 

even thinking much about it.  

 

 
 

1.10.2 ADDING AND MULTIPLYING FUNCTIONS AS COMPOSITION 

Sometimes, function composition shows up in disguise. You may already know that you can 

create new functions by adding, subtracting, multiplying, and dividing two or more 

functions. For instance, by adding two functions, we can get one that quadruples the input: 

quadrupleInput(x) = doubleInput(x) + doubleInput(x) 

= 2x                 + 2x 

= 4x 

Similarly, by multiplying two functions, we can get one that cubes and doubles the input: 

Functions can accept functions as inputs and produce functions as outputs 

Function decomposition is breaking down complex functions into simpler functions  
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cubeAndDouble(x) = doubleInput(x) ∗ squareInput(x) 

= 2x          ∗ x2 

= 2x3 

As you can see, this is an easy way to create more complex 

functions using simpler functions and therefore is essential in many 

modeling activities, as we will see later. However, here is 

something that is not completely obvious. Function addition and 

multiplication is a form of function composition. Why? Do you 

remember how we talked about operators like addition and 

multiplication as functions? So, what we are doing is feeding our 

functions into an operator, which is a function by itself, as shown 

by the Visual Model. This should not be a surprise because, to 

create a new function using existing functions, we need to use 

function composition.  

Note that this is different from feeding function f into function g. 

Instead, we feed both f and g into an operator, which is a function 

that takes two inputs. The operators can accept whole functions as inputs and produce new 

functions as their output. This shows that operators are more powerful and versatile than 

we thought before. In addition to accepting numbers and variables as input, operators can 

also accept other functions as inputs and produce new functions as their output. Being 

functions, operators get that ability naturally. In advanced mathematics, you will see this 

again with other operators like the differential and integral operator. Those operators also 

accept functions as inputs and produce new functions as their output. All of these are made 

possible by function composition.  

If you didn’t pay much respect to function composition, I hope I changed your mind. Among 

important concepts in algebra, it is second to only the concept of a function itself.  

1.11 There’s More Than One Way to Skin a Cat (or a Relationship) 

In previous sections, we learned how to express a relationship between inputs and an 

output. However, it may not have occurred to you that there is more than one way to model 

a given relationship.  
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1.11.2 USING A COMMON PARAMETER 

Let’s take your parents as an example. They are 

related as spouses. Can they be related in another 

way?  Let’s see. You are related to both of them. So, 

we can establish another, and a different, 

relationship between your parents using you as the 

common thread. For instance, if you were to 

introduce your parents to another person, you can 

introduce them as husband and wife, or alternatively, as your mom and dad. Both are 

equally valid, though different relationships. 

To make the above example quantitative, let’s talk about the age of your parents. You may 

object to it, saying that it’s not polite to talk about age of your parents. Well, you are asking 

too much from a book that begins by referring to dog poop. Anyways, I will not use their 

exact age, just because you asked nicely. 

Let’s just say your dad is 3 years older than your mom. We can express this relationship as: 

          Dad’s age  = Mom’s age + 3    (1) 

The above is a perfectly valid relationship. However, this is not the only way to express this 

relationship. Can you think of another way? I already gave you a big clue. Yes, it’s you. Let’s 

say your dad is 30 years older than you. Then you can express the age of your parents as 

follows: 

       Dad’s age  = Your age + 30    (2) 

        Mom’s age  = Your age + 27    (3) 

We established a relationship between your dad’s age and your mom’s age using two 

relationships.  These two relationships indirectly convey the same fact that your father is 3 

years older than your mother, but that is expressed as two relationships, instead of one. 

Both relationships (2) and (3) use “Your age” as the input. Therefore, we call your age a 

common parameter. Using this common parameter, we can discover the original 

relationship given in (1). 

You can do the same thing for mathematical functions. Sometimes, it is useful to look at a 

function using different relationships. Usually, we do that to make calculations easier or 

relationships more straightforward. For instance, the following example shows how we can 

reduce a 3-input function to a single-input function.  

Let’s say you want to bake cookies. To bake cookies, say you need four ingredients — flour, 

eggs, butter, and sugar. However, say that the final number of cookies is determined by the 
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weight of flour, butter, and sugar you use. You can model this relationship as a function of 3 

inputs.  

Number of Cookies = 10 ∗ (Weight of Sugar + Weight of Flour + Weight of Butter) 

However, if you have even touched a mixer, you know it doesn’t work this way. You can’t 

take any amount of sugar, any amount of flour, and any amount of butter and make cookies. 

You have to take them in proper proportions. What does that mean in the context of 

functions? The three ingredients we have as inputs to the function are not really 

independent; they are related. You cannot independently assign any value you like to each. 

Rather, we have to pick one ingredient, and based on that, pick the amounts of other 

ingredients. Let’s say, we use the number of eggs as the primary ingredient (independent 

variable), mainly because, we need to pick a whole number of eggs. Then, we can decide the 

weight of other ingredients based on the number of eggs we decide to use.  

         Weight of Sugar =  3 ∗ Number of Eggs 

         Weight of Flour =  5 ∗ Number of Eggs 

      Weight of Butter =  0.1 ∗ Number of Eggs 

Let’s assume that all weights are in pounds, but you can use any unit like kilograms, or even 

metric tons, since we are not actually going to make any cookies. If you are reading this 

book for cooking advice, you have bigger problems you need to solve first!  

 
What did we just do here? Since the inputs were related, we picked one variable as the 

primary input variable. Again, we call such a variable a parameter. Then, we can express all 

other variables using this common parameter. The above Visual Model shows this clearly. 

In our case, we used the number of eggs as our parameter. We calculated the weights of 
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sugar, flour, and butter, using this parameter. Using these three weights as inputs, we can 

calculate the number of cookies, with the help of our original function. Better yet, we can 

calculate the number of cookies using our common parameter as the sole input: 

 Number of Cookies = 10 ∗ (3 + 5 + 0.1) ∗ Number of Eggs 

   = 81 ∗ Number of Eggs 

Therefore, our function of 3 variables became a function of just one variable, with the 

choice of a suitable parameter. With this parameter, we can express both the inputs and the 

output of the function.  

You could have parameterized this relationship using a different parameter — e.g., you 

could have picked the weight of flour. The best parameter depends on the situation. In our 

example, if we picked the weight of flour as our parameter, and then chose some arbitrary 

amount of flour, we would end up with a fractional number of eggs, which would have been 

really messy when it came to baking cookies.  

1.11.3 GOING BEYOND FUNCTIONS 

In many real-world problems, you will encounter models with a parameter. We can 

parameterize any relationship, but we usually do it when it is useful. In physical 

relationships, time is such an often-used parameter, since many other properties depend 

on time. For instance, if an object is moving through space, its vertical position (y) and 

horizontal position (x) vary as time goes on, and hence can be modeled using time (t) as a 

parameter, as follows: 

x = 4t2   [ horizontal distance varies quadratically with time t ] 

 y = 2t   [ vertical distance varies linearly with time t ] 

As you can see, the relationship between x and y is expressed using time, t, as the common 

parameter. If we graph the relationship between x and y, we get the following graph. Note 

that the relationship between x and y cannot be expressed as a function of x, because, you 

have two output (y) values for the same input (x) value. For instance, when x=1, output y 

can take two values, 1 and -1.  However, parameterization allows us to express this 

relationship between x and y as two proper functions of t. This is another advantage of 

parameterization.  
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Further, if we wanted to express the distance to a point (x, y) from origin, using 

Pythagorean Theorem, we get: 

          distance  = (x2 + y2)½  

= (16t4 + 4t2)½ 

You can see that we can model distance as a function of one variable, instead of using two. 

This is another advantage of parameterization.  

The above relationship models a parabolic curve. You can do the same for other curves like 

circles, ellipses, hyperbolas, etc. and often parametric equations are used in modeling such 

shapes that cannot be modeled with a single function. Expressing a complex relationship as 

a set of parametric functions makes analysis easier.  As a result, parametric functions are a 

useful tool in modeling and analysis, and you will see another example in Section 7.12.3.  

1.12 The Story So Far 

This book is a story about the function dynasty. In this very first chapter, we looked at how 

functions came into existence in the first place, what they look like, and what traits they 

have in common. 

Functions arose because of our desire to model the real world. We saw that all members of 

this function dynasty do just one thing: they produce output from input. That’s all they do, 

but they do it really well.  

As members of any family, functions can be quite diverse. Yet, they have a lot of things in 

common. We dedicated this chapter to those features that are common to all members of 

the family. 
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First, let’s start with the simplest thing they share in common — a name. Whereas ordinary 

people get names like Robert and Chris, functions, being members of a dynasty, get fancy 

names, like f, g, and h. Some functions, called operators, get still fancier names like +, −, ∗, ÷, 

etc. They are called operators, because they are quite popular and useful in building many 

common relationships. The name of a function can be combined with its input to name the 

output. This works really well, because a function produces only one output, although it can 

accept one or more inputs.  

Second, we saw that functions, just like celebrities, are photogenic. If we plot the output of a 

function vs. its input, we get a graph (a ‘portrait’) of a function, which is quite useful in 

identifying how the output varies when we change input (i.e., the shape of the function).  

Third, we discovered a behavior of functions that makes them really successful as a family: 

they can cooperate with each other to get big jobs done. Put simply, a function can feed its 

output into the input of another. This has a fancy name: “composition”. What it does is 

pretty mundane, yet astonishingly powerful.  

Fourth, in a big family, you can always find multiple relationships between given two 

persons. Your grandma is the mother of your mother, wife of your grandpa, mother of your 

uncle, and neighbor of your nephew Greg, and so on. Different relationships help us build 

different models, some of which are easier to analyze and some of which cannot be even 

represented by a single function. We saw that with parametric models. 

Although functions are really powerful, as we all know, powerful people also have their 

own problems. In the next chapter, we are going to take a sneak peak at their messy 

problems.  
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2 SOLVING RELATIONSHIP PROBLEMS  

Chapter Overview: In the previous chapter we looked at how to build mathematical 

relationships using functions and explored traits common to all of them. Although we 

discussed how to evaluate function output when input is given, we did not explore the 

reverse — how to find the input that produced a given output.  This chapter is dedicated to 

that topic. In the process we will meet inverse functions that “undo” operations, roots that 

lead to zero outputs, and finally, how these concepts can be used to find solutions. 

The first chapter of this book looked at how to build a relationship. In real life, relationships 

always lead to messy problems! Mathematical relationships are no exception.  Luckily in 

math, we have some tools to deal with those pesky little problems.  

 

 

Remember our pooch from the previous chapter? There, we built a model saying that she 

would poop half of dogfood she ate, as measured by weight. As an example, this model told 

us that if we gave her 200 grams of dogfood, she would produce 100 grams of poop. 

However, there is another very interesting question this model can answer. One day, all of a 

sudden if you got 500 grams of poop, you would no doubt wonder how much she ate (and 

who left the fridge open). This is a very common question we ask from any model we build. 

Although it is easy to answer in the case of the model we built for your pooch, it is always 

not so easy for the real-world models we build. That’s why we have this entire chapter to 

build some background to help us answer that important question.   

2.1 Whodunnit: Which Input Caused That Output? 

As we saw in the previous chapter, finding the output with a given input is known as 

function evaluation. However, there is another important question we can ask: if we got 

Gosh! What caused this much output? 
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this output from a function, what was the input to the function that produced that output? 

This is known as finding solutions (or solving for input). For instance, take the function 

      f (x)  = 2x + 3  [ multiply input by two and add three ] 

If we have input 4, the output of the above function is given by: 

      f (4)  = 2∗4 + 3 

  = 11   [ f (4) evaluates to 11]   

The above is function evaluation. However, let’s say we want to find 

which input value produces the output value 11, as shown in the Visual 

Model to the right. Then, we have: 

      f (x)  = 11   [ function produces 11 as output ] 

 2x + 3 = 11   [ use recipe of function on the left ] 

We find the input value that produces 11 by finding solutions to the above 

equation, as: 

 2x + 3 = 11   [ recipe produces output 11 ]   (1) 

 2x  = 11 – 3  [ subtract 3 from both sides ]  

  x  = (11 – 3) / 2  [ divide each side by 2 ] 

  x  = 4   [ Eureka! the input is 4 ] 

Eureka! We found the input value that produced the given output. The above process is 

sometimes referred to as “solving for x”.  

It is very important to understand the difference between above two processes. One is 

function evaluation. We use that when we know the input and want to find the output. The 

other is finding solutions (to an equation). We use that when we know the output and want 

to find the input. 

 

 

What are practical use cases of each? Say you are selling candy bars 

online. You build a model to find the price to charge a customer. You 

charge $3 for each candy bar and $1 for shipping the package, giving 

you the following model, where the input ‘bars’ represent the number 

of candy bars:  

   find_price ( bars ) =  3 * bars + 1   

 We need to solve equations to find input, when output is given  
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The Visual Model for it is given on the right. The computer code for this model is also 

straightforward: 

 

 

How do we use this model? A customer may come and ask for the price of 10 candy bars. 

You use your model, with input of 10, to get the output price of 31 dollars. Another 

customer may come and ask you how many candy bars she can buy for 34 dollars. For that, 

you use 34 as the output, and solve for the input as: 

   bars ∗ 3 + 1 = 34   [ 3 bars plush shipping is $34 ]  (2)  

  bars * 3 = 34 – 1  [ subtract 1 from both sides ] 

  bars  = (34 – 1)/3  [ divide both sides by 3 ] 

   bars   = 11 

Notice that when we know the output value and want to find the input, we always have an 

equation like (1) or (2). In general, this equation has the form: 

  f (x)  = b   [ output value is b for input x ] 

where b is the output value. For instance, in (2), b is 34 and f (x) is 3x+1. Therefore, 

whenever we have a function producing a specific output value, we have an equation of the 

above form.  

 

 

You should understand that function evaluation and solving equations are two sides of the 

same coin. Real-world situations require us to use both of these methods under different 

circumstances. However, both of them involve a function, an input and an output. In one 

case, we know the input and want to find the output. In the other case, we know the output 

and want to find the input.  

  

function find_price( bars)  
{ 
 price = 3 * bars + 1      

 return price 
} 

A function producing output b yields to an equation of the form f (x) = b 
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2.1.2 MODELS FOR SOLUTIONS 

We can develop models for finding solutions too. For instance, we 

can build a more general model of (2), to find the number of candy 

bars for a given price: 

   bars ∗ 3 + 1 = price [ original model ] 

   bars ∗ 3  = price - 1 [ subtract 1 from both sides ] 

   bars  = (price – 1)/3 [ divide both sides by 3 ] 

    

The Visual Model for the above solution is given on the right. Here is the computer code for 

it. It returns the number of candy bars when the price is given as an input. 

 

To summarize, we built two models: 

   find_price (bars )  =  3 * bars + 1  [ find price when # bars is given ] 

  find_bars (price) =  (price - 1) / 3 [ find # bars when price is given ] 

Do you feel that these two models are somehow related? Of course, they are, because we 

could go from one to the other with simple algebraic manipulations as we saw above. We 

will find out their exact relationship in the next section.  

2.2 Oops! Hit Undo! Hit Undo! Undo with the Inverse of a Function 

We looked at a function as a model producing an output (say, y) for a given input (say, x). If 

we start with that output (y), is there another function that would revert it to the input (x) 

we started with?  

Why is this important in the real world? Think about a natural process. Let’s take freezing 

as an example. If we freeze water (input), we get ice as the output. We can reverse this 

process (function). If we heat up (thaw) ice, it will become water again. Some processes are 

reversible, and for such processes, it is important to know what the reverse process is. This 

reverse process is called the inverse.  

function find_bars( price )  
{ 
 bars = ( price – 1 ) / 3      

 return bars 
} 
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All processes (hence functions) don’t have an inverse. Take our very first example. If we 

give dogfood to a dog, she can produce poop. But there is no process in the world to make 

dogfood using poop as input! 

However, many important functions you find in practice have inverses. For instance, a 

convex lens produces an upside-down image (when the object is far enough). You can use a 

second lens to invert that image back to get an upright image.  

The figure below visualizes the inverse of a function using our Visual Model. Figure (a) 

shows the general description of inverse. If you feed in an input to a function and get an 

output, and then feed that as an input to the inverse of that function, you get your original 

input back.  

 
 

Notice that we are doing function composition here (as we learned in Section 1.10). We are 

feeding in a function into its inverse, to get the original input back.  

Figure (b) shows function “freeze” and its inverse “thaw”, as we described before. Figure 

(c) shows an algebraic example. If we send an input x through the doubleInput function, we 

get the output 2x. Then, if we send that 2x through its inverse, halveInput, we get our 

original input x back. Therefore, doubleInput and halveInput are inverse of each other.  

Notice that I said “inverse of each other”. Why? Because you can do this the other way 

around too. If you send an input x through halveInput first, and feed that output into 

doubleInput, you get your original x back. This is a special case, because earlier we saw that 

order matters when it comes to function composition. Inverse is a special case of function 

composition, where order does not matter. However, as they say in TV commercials, “some 

restrictions apply”, as we will soon find out. 
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Figure (d) is another algebraic example. If we square an input first and then feed that 

output into square root function, we get our original input back, as long as we are dealing 

with non-negative numbers. You can also reverse the order. If you apply squareRoot first 

and then squareInput, you will get the original number. This will work for all non-negative 

numbers. 

 

Computer code for doubleInput and its inverse halveInput is shown below. At the end, we 

use function composition as we did before by feeding a function into its inverse. For 

instance, to calculate out1, we evaluate halveInput(10), which is 5, and then feed that into 

doubleInput, which evaluates to 10 again.  

 

 
 
If you have difficulty understanding the function composition in the computer code, I have 

given the expanded form below, with a temporary variable y to represent the output of 

halveInput(10).  

 

 
 

2.2.1  WHEN FUNCTIONS REFUSE TO INVERT 

Now we are ready for the fine print. We defined squareInput and squareRoot functions in 

figure (d) above for only non-negative inputs. This is because, if we use -2 to as the input to 

function doubleInput( number1 )  
{ 
 output = 2 * number1      

 return output 
} 

function halveInput( number1 )  
{ 
 output = number1 / 2      

 return output 
} 

out1 = doubleInput( halveInput( 10 ) )  

print( out1 )    // prints 10 
 
out2 = halveInput( doubleInput( 10 ) ) 

print( out2 )    // prints 10 
 

y = halveInput( 10 ) // y = 5 

out1 = doubleInput( y )  // out1 = 10 

print( out1 ) 
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the squareInput function, it will produce 4, which makes the squareRoot function produce 

2 as its output. That’s not our original input. Why does this happen?  

The problem starts with the squareInput function itself. For 

two separate input values (e.g., 2 and -2), it produces the 

same output, 4. This is perfectly OK for a function. However, 

now, its inverse function, squareRoot, faces a major difficulty. 

If squareRoot function sees 4 as input, should it produce 2 or 

-2 as output? It cannot produce both. That’s not allowed for a 

function, as we saw in Section 1.2. A function cannot produce 

two different outputs for the same input. So, we have to 

restrict the input domain of the squareInput function to 

either positive or negative values. For positive input values of 

squareInput, the inverse of the squareInput function is 

positive squareRoot. For negative input values of 

squareInput, the inverse of the squareInput function is 

negative squareRoot (i.e., square root multiplied by -1), as shown in the Visual Model. 

If this seems confusing, let’s look at a real-world analogy. Let’s say that there is one road to 

your house. So, if someone arrived at your house, you know exactly how he got there. Thus, 

you can tell him exactly how to go back — just follow the road in the reverse direction. 

That’s the inverse operation. Now, assume that there are two roads to your house. If 

someone is at your doorstep, you don’t know exactly how she got there (she could have 

taken either road, or even both roads if she were a quantum physicist!). So, you cannot tell 

her exactly how to get back to where she came from (you cannot find the inverse). Say you 

are really mad about this situation (who wouldn’t be?). What can you do? You go and block 

one road to your house, so you know exactly how someone got to your house. This is 

exactly what we do by restricting the input domain. We close up all paths except one. 

The bottom line is this: if a function produces the same output for two or more inputs, 

before finding its inverse, we have to restrict its input domain to some subset of input 

values. For this subset, the function must not produce the same output value for two 

different input values.  

2.2.2 FINDING INVERSE FUNCTIONS 

In figure (c) above, we looked at function doubleInput and its inverse. However, how do 

you find the inverse of a given function algebraically? Let’s start with function  f (x) = 2x.  

Let’s use a variable y to represent the output of f, so we get: 

  y = 2x   [ multiply input by 2 ]   (1) 
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We know that the above is a relationship between x and y, where x is the input and y is the 

output. To find the inverse, we want to find the relationship where y is the input and x is 

the output (i.e., switch input and output). How do you do that? Pretty easy. Use the same 

relationship and solve for x (because, now x is the output). Then from (1) we get: 

  x = y / 2   [ divide input by 2 ]    (2) 

That’s the inverse of (1). Notice that we calculated inverse by solving for the input. 

 

Also notice that (2) still has the same relationship between x and y as in (1) — only the 

output and input are switched. Thus, in (2), y is the independent variable and x is the 

dependent variable.  Therefore, what we have is a function of y: 

  g(y) = y /2   [ divide input by 2 ]    (3) 

There are a couple of things to note. First, instead of using a separate function name g, to 

identify the inverse of f, we usually use the name f -1. Notice that the superscript -1 is just a 

part of the name, indicating that it’s the inverse function of f, the same way a child of a 

person named John Miller could be called John Miller Jr. If this is confusing to you, always 

think of f -1 as f inverse(x) or f_inverse(x), where we use the word “inverse” instead of 

superscript -1. In fact, I prefer f inverse or f_inverse(x), because students tend to confuse  

f -1(x) notation with x-1, which is 1/x. Therefore, it is good to have the following mental 

picture: 

   f -1(x) = f inverse (x) = f_inverse(x) 

Second, as always, the input variable name can be anything. Therefore, (3) can be written 

as g(u) = u /2, g (x) = x/2, etc. The name of the input variable does not change the 

relationship. However, it is customary to use x as the independent variable so you will 

often see (3) as: 

  f -1(x) = x / 2  [ divide input by 2 ]    (4) 

It is important to note that both (3) and (4) represent the same relationship. We just halve 

the input to produce the output. The function name and the input variable can be anything.  

Let’s confirm that the inverse relationship holds between f and g. That is, if we feed the 

output of f into g, we should get the original input back. That is, we should have: 

We can calculate inverse by solving for the input (x)  
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  g ( f (x) ) = x  [ function f feeding into function g ] 

Let’s see whether this is the case: 

  g( 2x ) = (2x) / 2  [ function g divides input by 2 ] 

   = x 

Similarly, if we feed the output of g into f, we should get the original input back. That is:  

f ( g (x) )   = 2 ∗ g (x)   [ function f multiplies input by 2 ] 

= 2 ∗ (x/2)  [ function g divides input by 2 ] 

= x 

This confirms the inverse relationship between f and g. 

2.2.3 USING INVERSE FUNCTIONS TO SOLVE EQUATIONS 

In the previous section, we saw that we can calculate the inverse of a function by solving 

for its input. This is a very powerful observation. We were hinting about such a connection 

in Section 2.1 while solving equations.  

This observation leads to a practical application of inverse functions. The inverse function 

lets you find the solutions to equations of the form  

        f (x)  = b   [ b is the output for input x. E.g., f (x) = 14 ] 

where b is a constant. For instance, take function     

    f (x)  = 2x.  [ function f multiplies input by 2 ] 

Now, say that for some input value, a, we got the output value 14. This means: 

     f (a)  = 14  [ input value a produces output 14 ] 
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Which value of a would give us the output of 14? How do you find that out? 

Of course, we can use the inverse function of f. We just feed the output of f, 

14, as the input to the inverse of f. The inverse of function f is f -1. So, we 

have to evaluate f -1(14). What is f -1(14), by the way? From (4), we have: 

    f -1(x)  = x / 2  [ divide input x by 2 ] 

Then,  f -1(14) = 14 / 2 [ divide input 14 by 2 ] 

            a = 7 

This is a very important observation. If you know the inverse function 

of  f (x), you know the solution to the equation of the form f (x) = b. 

Therefore, finding a solution and finding the inverse follow the same steps.  

 

 
   
You can also derive this relationship algebraically as follows. Let’s say the output of the 

function f for input x is b. In other words, we have 

        f (x)  = b   [ b is output of function f for input x ] 

Taking the inverse of both sides (i.e., doing function composition with f -1 on both sides), we 

get: 

       f -1 ( f (x) ) = f -1 (b)  

 

Notice that the left side is feeding x into a function f  and then feeding its output into its 

inverse, which gives back x. So, we have: 

 

         x = f -1(b) [ x is the output of function f -1 for input b ]   

Therefore, we can solve f (x) = b by using  f -1.  

2.2.4 GRAPH OF INVERSE FUNCTIONS 

Graphs are useful in visualizing input and output relationships. Since a graph is a complete 

representation of all input and output values, we can use it to find both: 

• the output value for a given input, and 

• the input value for a given output. 

Inverse function, f -1, can be used to solve the equation  f (x) = b 
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In other words, a graph is useful for solving equations (finding input for a given output), in 

addition to finding output for a given input (function evaluation).  

For instance, let’s take the graph 

of function f (x) = x2 + 1, for non-

negative inputs, as shown by the 

green curve. If we wanted to find 

the input value that produces 

output 17 (the yellow dot), we see 

that the corresponding input is 4 

– i.e., the yellow dot is point (4, 

17).  

Notice, that we just solved the 

equation f (x) = 17, or x2 + 1 = 17, 

for non-negative inputs, using the 

graph of f. In other words, we 

found that f (4) = 17, and 

according to the definition of 

inverse function, we see f -1(17) is 

4. We can plot this point on our 

graph too (blue dot). If we do that for all output values of f, we get graph of f -1 function, 

which is shown by the brown curve.  

Notice that if point (4, 17) is on the green curve for f (x), the point (17,4) is on f -1(x). Why? 

We know that if y is the output of f for input x, then point (x, y) is on the curve of f. Now, if 

we feed y as input to f -1, according to the very definition of an inverse function, it outputs x 

– i.e., the original input to f. Therefore, point (y, x) is on the curve of f -1.  

Graphically, this switching of input and output between f and f -1 leads to an interesting 

result. That is, f -1 is a reflection (mirror image) of f, if we keep a mirror at the line y = x 

(blue diagonal line). Therefore, the blue and yellow dots above are mirror images of each 

other – i.e., they have the same distance to the blue diagonal line, similar to an object and 

its reflection in a mirror.  

 

Therefore, given a graph of a function, you can derive the graph of its inverse without 

additional calculations. You just have to reflect it using a mirror placed on line y = x. 

Graph of f -1 is a reflection of graph of f (with mirror placed at line y = x) 
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2.2.5 INVERSE OPERATORS 

Now that we know how to find the inverse, can you find the inverse functions of common 

operations? Let’s start with addition. If we add 5 to an input x to produce output y, how do 

we get x back? We subtract 5 from y. Therefore, addition and subtraction are inverse 

operations. Similarly, what is the inverse of multiplication? If we multiply 5 by an input x to 

get output y, how do we get x back? We divide y by 5. Therefore, multiplication and division 

are inverse operations.  

Here is a surprise. You may have been applying function inverse even without knowing. 

When solving an equation, you were taught to do the same operation on both sides of the 

equation. For instance, if you have to solve the equation 2x = 10, you would divide both 

sides by 2. Why were you taught to do that? You may say, we want to isolate x on the left 

side. Yes, but why would you divide? That’s because 2x is a result of multiplication, and you 

need to apply its inverse (i.e., divide) to revert that multiplication. So, here is another way 

to think about the original equation, assuming we have a function called multiplyByTwo 

that multiplies its input by 2 and another function divideByTwo that divides its input by 2: 

 multiplyByTwo(x)    =  10 [ original equation 2x = 10 ] 

 Now, apply inverse of multiplyByTwo, which is divideByTwo, to both sides: 

divideByTwo( multiplyByTwo(x) )  =  divideByTwo( 10 )  [ apply inverse ] 

x  =  5    

So, when you were “solving for x” in an equation by doing the same operation on both 

sides, you were actually applying function inverse every step on the way! Therefore, after 

you have applied those inverse operations and “solved for x”, you are left with the inverse 

function! So, it is not at all surprising that we can use the inverse function to “solve for x”. 

 

Now, here is a puzzler. Are there functions whose inverse is itself? Multiplying by 1 is an 

example. When you multiply x by 1 you get x itself. So, if you do the same operation again, 

you get the original number x. That’s a trivial case. There is a more interesting case: 

multiplying by -1. If you multiply input x by -1, you get output -x. If you multiply that output 

-x by -1, you get the original number x.  

Why are we so interested in function inverse? It’s because, in practice, you often need both 

a function and its inverse. For instance, if you have a route to get to work or to school, you 

need a way to get back home too. Algebraically, if a given input produces an output, often 

we need to find out what input produces that output. That’s why we need function inverse.  
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You will also find that some operations are easier to do after we take the inverse (i.e., in the 

inverse domain). For instance, when you are reading an article on a computer or a 

smartphone, often you need to zoom-in. It is easier to see details after zooming in. 

However, once you are done looking at the details, you need to zoom-out to continue to 

read normally. Zoom-in and zoom-out are inverse operations of each other. Similarly, if you 

are standing up and want to put on shoes, it is really awkward to do so standing up. You 

would first sit down, then put-on your shoes, and then stand up again. Sitting down and 

standing up are inverse operations. Putting on shoes is easier after sitting down. Therefore, 

in many fields we often move between a mathematical model and its inverse. Such 

operations and their inverses are usually called forward “transformations” and 

reverse/backward/inverse transformations, respectively, and some operations are easier 

after you do a forward or an inverse transformation. If you hear fancy names like Fast 

Fourier Transform (FFT), Laplace Transform, Discrete Cosine Transform (DCT), you would 

be right to guess that they have inverse transformations (operations) as well. For those of 

you who are familiar with calculus, differential and integral operations exhibit the same 

inverse relationship.  

If you did not pay much respect to function inverse, I hope I changed your mind. In practice, 

the inverse is as important as the original function itself!  They both go hand in hand. 

2.3 Putting it All Together: Solving Equations 

In this section, we are going to put all the concepts we learned before to solve equations. 

Remember, solving equations is just another fancy way of saying finding input for a given 

output. Before we do that, we need to visit just one other concept. 

2.3.1 BAD ROOT! YOU PRODUCED NOTHING! 

A function produces output for any input. But all inputs are not created equal. Some inputs 

lead to special outputs.  

Zero is a special output. It means nothing. But what’s more important is what input leads to 

this nothingness. Think about it for a moment. A function’s job is to produce an output. The 

function could do an elaborate manipulation of its input to produce an output. For instance, 

say you have a recipe to make a cake. It has many ingredients (inputs) and a complicated 

recipe to produce a cake. Now, if I told you that there is some input for which you will not 

get any cake, you will be surprised. It must be a really strange input, that may say 

something special about the function itself.  

Let’s take an example. The length of your shadow can be modelled as a function. When the 

sun is out, the length of your shadow due to sun is determined by the angle of the sun. 

When would the length of your shadow become zero? When the sun is directly above your 
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head (assuming your body is shaped like a cylinder!). This immediately tells you some 

important thing about this function. Unless, you can get directly under the sun, you will 

always cast a shadow. In other words, if you live in a place where the sun does not shine 

directly above your head, you will always cast a shadow when the sun is out.  

 

 
 

An input that produces zero as its output is called a root (such inputs are also called 

“zeros”, not surprisingly). We can always re-arrange an equation to give an output of zero. 

For instance, take the equation: 

  5x2 = 2x + 3 

For instance, the left side (5x2) could represent the path of a comet in a given 2D plane, and 

the right side (2x + 3), could represent the path of a probe we launch in space, in the same 

plane. We want to find out where (and whether) they would intersect. In other words, if 

you were to graph this, the left side (5x2) represents a parabola and the right side (2x + 3) 

represents a straight line. The above relationship (equation) is satisfied when both sides 

produce the same value — that is, when the probe and the comet intersect.  

However, rather than finding when both sides would produce the same value, we can re-

arrange the above equation so that right side is zero: 

  5x2 − 2x − 3 = 0 

This is an equation of the form f (x) = 0, where f (x) = 5x2 − 2x − 3. In other words, we 

transformed the problem to a new form, where we have to find the input values of x, that 

makes f (x) zero. Simply put, we have to find roots of  f (x). 

Depending on how many roots f (x) has, we can determine how many times the comet and 

the probe would intersect. If it has no real roots, there are no points of intersection. If there 

Bad Root! You produced nothing! 
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is one root, there is only one point of intersection. Similarly, if there are two distinct roots, 

they intersect at two distinct points. 

2.3.2 ROOTING FOR THE INVERSE 

The above example shows that, when we have to find input values that make the output 

of  f (x) zero, we just have to find the roots of  f (x). These roots are the “solutions” to the 

equation  f (x) = 0, because the roots satisfy that equation. That is, finding solutions to the 

equation  f (x) = 0 and finding roots of  f (x) are the same thing.   

 

 
   
In general, if we have to solve equation f (x) = b, instead of equation f (x) = 0, we just have to 

find the roots of f (x) − b. For instance, to solve 5x + 3 = 2, we have to find roots of 

(5x + 3) – 2, or roots of function 5x – 1. 

How do you find roots of a function f (x)? In other words, how do you solve the equation 

f (x) = 0?  That’s not always trivial. We saw one way to do that in a previous section, with 

function inverse. If we know the inverse of a function, we can find the solutions to an 

equation of the form f (x) = b. For instance, say if we have,  f (x) = 2x – 4. Its inverse function, 

f -1(x) is (x + 4)/2.  

So, to find the values of x, which satisfies equation 

       f (x)  = 0   [ function f produces output 0 for input x ] 

we can take the inverse of both sides to produce: 

           x  = f -1(0)  [ function f -1 produces output x for input 0 ] 

Since   f -1(b)  = (b + 4)/2,  we get    [ using the fact f -1(x) = (x + 4)/2 ] 

 

   f -1(0)  = (0 + 4)/2 

   = 2   [ function f -1 produces output 2 for input 0 ] 

The above means that f (2) is zero. That is, 2 is a root of function f (x), which means  

      f (2)  = 0   [ function f produces output 0 for input 2 ] 

Therefore, finding the roots of a function f is the same as evaluating f -1 at input value 0, if    

f -1 exists.  

 

Solving  f (x) = 0 is the same as finding the roots of  f (x) 
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However, as we saw previously, f -1 does not always exist. In such 

cases, we need to resort to other methods to find the roots of a 

function, in order to solve equations of the form  f (x) = 0. Many 

polynomial functions in particular, do not have inverse functions 

and we will see a different method to find their roots in Section 

4.2.1.2.  

To summarize, when we know the output b of function f (x) and 

want to find the input value that produces b, we have several 

options, as shown in the Visual Model. We can 

• directly solve f (x) = b,    [ e.g., solve f (x) = 2, where b is 2 ] 

• find the inverse of f and then find f -1(b), or  [ e.g., find f -1(2) ] 

• find the roots of f (x) − b.     [ e.g., find roots of f (x) – 2 ] 

All of these achieve the same objective of solving an equation.  

Recall from Section 2.2 that directly solving an equation is nothing more than repeatedly 

applying inverse operators to both sides of an equation.  

Now you should be able to clearly relate several seemingly unrelated concepts: 

• Finding input for a given output entails solving an equation 

• Solving equation f (x) = b is same as finding roots of  f (x) − b 

o When the inverse function exists, we can use that to directly find roots (or 

we can apply inverse operators repeatedly to solve for input)  

o When the inverse function does not exist or difficult to calculate, we need 

other methods to find roots  

Now you know the value of roots and inverse functions.  They are essential when we need 

to find which input produced a given output in mathematical models we build.  

Finding solutions for mathematical models is a vast and complicated subject area. In the 

coming chapters, when we explore a new model, we will take effort to look at its inverse 

model (if it exists) or other root finding techniques that allow us to solve for input.   

  

f -1(0) gives us roots of  f (x), or solutions to  f (x) = 0 
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2.5 The Story So Far 

As we mentioned before, this is a story about the function dynasty. In the first chapter, we 

looked at how functions came into existence, why they are such experts in building 

relationships, and what properties they have in common. This chapter was dedicated to a 

common problem they face and some common tools they can use to solve that relationship 

issue.  In the process, we explored several key concepts. 

 

First, we looked at the problem the functions faced every day. Being members of a dynasty, 

they don’t have usual money and employment problems that ordinary folks have. Their 

problem is rather unique. If they are confronted with an output they have produced, it is 

not always straightforward to figure out which input they consumed led to that output.  

Second, we discovered how this problem requires solving equations. When we know a 

function and its output but do not know which input produced that output, that leads to 

equations of the form f (x) = b, where b is the output and x is the input. We need to solve 

such equations to find out which input produces the given output. 

Third, we looked at inverse functions. As a particular example of composition, we saw that 

feeding the output of a function to its inverse function allows us to get the original input 

back. This is invaluable in the real-world. In a big family, if there is someone who does 

something, there is another who undoes it. If there is a guy who makes jewelry from gold, 

there is another guy who melts jewelry to get back gold. The function and its inverse go 

hand in hand, and inverse functions are quite useful in solving equations of the form  f (x) = 

b.  

Fourth, we discovered that some functions produce the special output value of zero for 

certain inputs. These inputs are called roots, or zeros, of the function and are solutions to 

equations of the form  f (x) = 0. We can use inverse functions, when they exist, to find roots, 

and hence solve equations. That enables us to find the input for a given output, for the 

mathematical models we build. 

Having studied what traits and problems functions have in common, in the next chapter we 

are going to look at another common aspect that is really important to them: what they 

consume and produce. 
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3 NUMBERS: WHAT FUNCTIONS CONSUME AND PRODUCE 

Chapter Overview: In this chapter, we will gradually build up the concept of numbers, 

starting from whole numbers. We will see how using basic arithmetic operators on whole 

numbers leads to new numbers. Finally, we will explore a new operator, exponentiation.  

If functions are recipes, numbers represent the ingredients that go into and the final result 

of the recipe. They are the mathematical representations of objects in the real-world. 

 

Numbers were invented out of sheer necessity. Can you imagine how people communicated 

before numbers were invented?  

 

 

Numbers represent how many of a kind there is. They are a very powerful abstraction.  

The same number 5 can represent 5 apples, 5 oranges, or 5 of any kind. It took a while for 

humans to grasp that a number (a symbol), say 5, can represent some property about 

objects as diverse as apples, cows, trees, monkeys, etc. 

3.1 Invasive Numbers: How Numbers Breed More Numbers 

People first used numbers like 1, 2, 3, 4, … for counting (e.g., for counting chickens). They 

are called counting numbers, or whole numbers (We also call them positive numbers or 

natural numbers). They are pretty useful for our everyday lives.  

 

Why cavemen did not have supermarkets 
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Yes, whole numbers are useful, but are they really sufficient for all our purposes? For 

instance, to model real-world situations, we want to add, subtract, multiply, and divide 

numbers. So, let’s try those four basic arithmetic operations using these whole numbers 

and see how they stack up to our requirements. Let’s not forget that arithmetic operations 

are functions, as we saw in Section 1.9. So, basically, we are going to see what kind of 

outputs we get with our four basic functions, if we use whole numbers as inputs. 

3.1.1 ADDITION AND MULTIPLICATION 

Adding 5 apples to a pile of 10 apples will make the pile 15 apples. Pretty easy, eh? Even a 

caveman can grasp the concept. 

 

What about multiplication. You may have been taught multiplication as repeated addition. 

Later, we will discover why this is not exactly true. But for the moment, if you have to find 

the total number of apples in 3 bags, where each bag contains 5 apples, 5 + 5 + 5 works fine. 

3.1.2 FIRST SIGNS OF TROUBLE: SUBTRACTION 

Subtraction can be thought of as finding the difference between two numbers. A nifty way 

to think about subtraction is as follows. If we want to evaluate 5 – 3, we can think of this 

operation as finding what needs to be added to 3 to get to 5 (i.e., 2 needs to be added to 3 to 

get to 5). 

As we saw in Section 2.2.5, subtraction is the inverse function of 

addition. As an example, consider the function for adding 5 to the input 

and its inverse function, which is subtracting 5 from the input, as 

shown in the Visual Model.  

Subtracting 3 from 5 is dandy, but what about 3 – 5 (subtracting 5 from 

3)? What does this really represent? If we had 3 cows and 5 cows died 

due to an illness … wait a second. How can 5 cows die if we had only 3 

to begin with?  

Is 3 − 5 really nonsensical? The answer is both yes and no. The answer 

depends on what each number represents.  

 

If the numbers represented cows, of course you cannot subtract 5 cows from 3. However, 

let’s say we represent a forward step with the number 1. Then, if we took 2 steps forward 

and took 1 step back, we can represent that with 2 − 1. Accordingly, 3 − 5 represents “3 

steps forward and 5 steps back”, as shown below. This results in “2 steps back” from the 

position we started.  



58 
 

 
 

If numbers represented objects that have a “sense”, like forward and backward, where one 

“sense” is opposite of the other, the expression 3 – 5 is a perfectly valid expression. 

However, if the numbers represented objects without any such “sense”, then the expression 

3 – 5 has no meaning. This is a subtle but a very important point. Rather than blindly 

applying algebra, we need to first think about what each number represents. Then and only 

then, can you really understand a mathematical model. 

 

The above example shows that whole numbers are not enough to represent real world 

objects. We need to expand the definition of numbers to include a “sense” (Note that I did 

not use the word “direction” instead of “sense” because “direction” has a more general 

meaning like east, west, north, northwest, etc.)  

 

 
 
With this new expanded definition, numbers can represent 3 steps forward or 3 steps 

backwards; 3 steps up or 3 steps down; 3 steps above or 3 steps below. To distinguish one 

sense from its opposite sense, we need another symbol. For that purpose, we use a sign 

(either + or - ). With this, we can represent three steps forward by +3 and 3 steps 

backwards by -3. The positive sign is usually omitted for brevity.  

 

It is unfortunate that we use the same symbol for both addition and positive sense (and 

subtraction and negative sense). It is important to note that 5 + (-3) should be read as “five 

plus negative three”. 

 

Note that which sense is positive is quite arbitrary. We could represent a “forward step” 

using -1 and a “backward step” using +1. In that case, 3 steps forward and 5 steps 

backward (as in the example above) has to be represented by (-3) + 5. This results in +2, 

which means “2 backward steps” in this case. In either case, you end up “2 steps 

backwards” from where you started. However, if you change the sense, to represent the 

Whole numbers are not enough to represent objects in the real world 
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same real-world situation, you have to modify expressions. The final result in the real-

world is unchanged. 

 

The same way subtraction led to negative numbers, subtraction leads to another number 

we have not seen in this section so far: zero. For instance, 5 – 5 leads to zero.  

 

 

3.1.3 MORE TROUBLE: DIVISION 

You may have been taught to treat division as dividing a given number of objects into a 

given number of groups. That is, dividing 12 apples among 3 groups results in 4 apples per 

group. 

As we saw in Section 2.2.5, division is the inverse function of multiplication. Consider 

function f that multiplies its input by 3 and function g that divides its input by 3. Function f 

and g are inverses of each other. 

 

This is all dandy, but trouble starts when we divide a whole number by another whole 

number that leads to a non-whole number: a number we have not seen up to now.  If we 

divide 5 apples into two groups, each group ends up with two whole apples and half an 

apple. That is, five divided by two gives us two and a half, which cannot be represented by 

any whole number we have seen so far. So, we need a new number — i.e., a fraction (5/2) 

or a decimal fraction (2.5). 

 

 

3.2 Unwholesome Whole Numbers  

What’s really wrong with whole numbers? As we saw above, both subtraction and division 

of whole numbers can produce new numbers that are not whole. It seems like the concept 

of whole numbers is really inadequate (or broken, if you may). But why? The answer, as we 

will soon find out, is quite enlightening.  

 

Subtraction of whole numbers leads to negative numbers and zero 

Division of whole numbers leads to fractions 
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3.2.1 POOR ABSTRACTION OF REALITY 

As we discussed before, numbers are an abstraction of real-world objects. 

But before we go any further, we need to understand what an abstraction 

is. The figure here shows an abstraction of a chair. We model it with 3 

features. It has four legs to stand on, a flat surface to sit on, and a back-

support to lean on. That’s it. It can represent any chair with these 3 

features — e.g., a wooden chair, a sofa, a desk chair, an office chair, or a 

chair in a diner. But what about a “swiveling chair”? The abstracted chair 

cannot represent “swiveling”. Similarly, it cannot represent the “foldable” 

property of a folding chair nor can it represent the “reclining” property of a 

recliner. The bottom line is this: an abstraction represents some properties of real objects, 

but does not represent some other properties of real objects. 

 

As we discussed before, numbers are an abstraction of real-world objects. So are operators, 

which are functions used to model real-world relationships. If that is so, how come 

applying operators to whole numbers as inputs produce “un-whole” numbers? 

 

The answer lies in the quality of abstraction (i.e., how many features are abstracted, as we 

saw with our abstraction of the chair). Every abstraction is not created equal. As we will 

see soon, operators are a better (or richer) abstraction of reality compared to whole 

numbers. 

 

We know that real world objects do not come as just whole numbers. There can be 

fractions (e.g., half of an apple), and negative numbers (5 steps forward and 8 steps 

backwards). Whole numbers cannot represent these real objects. Thus, whole numbers are 

an inadequate abstraction of real objects. However, that’s not a real surprise. How did 

operators (functions) reveal that whole numbers are not the real deal? 
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Operators (functions) reveal that whole numbers are not the complete picture because 

operators are better abstractions of real-world relationships. Take division as an example 

and imagine the real-world scenario of dividing a loaf of bread among 3 people (i.e., 1 

divided by 3). That would force us to ask why a whole number cannot represent the output 

of our divvying up of bread. It also forces us to think about a new number that could 

represent the output of this division. Similarly, if we define subtraction as “finding 

difference”, in the real world we can always look at the difference between two positions — 

for instance, where would we end up if we take 3 steps forward and 5 steps backwards? 

This is the difference between the end position and the starting position. This forces us to 

come up with a new number that can represent this output. 

 

It’s fascinating how functions exposed whole numbers as a poor abstraction of the real 

world and pointed us in the right direction. In Chapter 6, we will see functions doing the 

same thing again. All in all, now we have whole numbers, negative numbers, fractions, and 

zero. All of these numbers are collectively known as rational numbers.  

3.3 Operations Revisited (with Negative Numbers) 

Let’s look at the same four basic arithmetic operations, but this time with rational numbers 

(especially with negative numbers). 

3.3.1 ADDITION AND SUBTRACTION 

Adding a positive number to a negative number can be easily understood using “sense”. For 

instance, 5 + (-3) can be interpreted as “go five steps forward”, and then “go three steps 

backwards”. 

Subtraction can be thought of as finding difference. For instance, 5 – 3 can be thought of as: 

how many apples are needed to make it to 5, if we start with 3 apples? Therefore, 5 – (-3) 

can be thought of as follows: if we start at a position that is 3 steps behind zero, how many 

steps are needed to get to a place 5 steps ahead of the starting position? As shown below, 

we need to go 8 steps forward, which means the answer is +8.  
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3.3.2 MULTIPLICATION AS TWO OPERATIONS 

If we multiply 3 by -2, we are essentially creating three groups of -2 objects (e.g., groups of 

2 backward steps). That would give us -6 (6 backward steps). Repeated addition works fine 

in this case (i.e., -2 + -2 + -2). 

However, what about -3 ∗ -2 ?  You cannot create -3 groups of -2 (or -2 groups of -3). There 

is no such a thing as -3 groups. Similarly, you cannot repeatedly add -3 negative two (-2) 

times.  

You may have been taught that -3 ∗ -2 = 6 (a Negative times a Negative is a Positive). That’s 

how it works. Period. But that’s a very unsatisfactory answer. 

Let’s start over. The problem appears when multiplying by a negative number. What really 

happens when we multiply by a negative number? What’s a good analogy? 

 

In Section 1.4, we looked at a magnifier as a function. Magnification is similar to multiplying 

by a positive number. A magnifier is a convex lens. A convex lens can do more than just 

positive multiplication. It can do negative multiplication as well.  That is, when the object is 

sufficiently far away from the lens, it flips the object, in addition to magnifying it, as shown 

in the figure above. There, we consider the upward direction to be positive and the 

downward direction to be negative. Therefore, if the original object is upright (positive), 

the resulting image is upside down (negative), as shown.   

 

 
This is an excellent example of multiplying by a negative number because “negative 

multiplication” does both of these things — it both magnifies a number and flips its “sense”.  

Ok, so what about multiplying a negative number by another negative number? How do we 

use a negative object in our analogy in the above figure? Well, what’s a negative object, 

according to our definition of positive and negative? An object that is upside down. So, if we 

A convex lens can do both positive and negative multiplication 
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were to start with an upside-down (negative) object, the resulting image would be upright 

(positive)! We multiplied a negative number by another and got a positive number. The 

following figure illustrates this clearly. 

 

 

Computer code corresponding to negative multiplication is given below. As an example, it 

multiplies by -10. It is quite simple.  

 

 
 
Even if you don’t have a convex lens, you can observe another type of negation (flipping) 

with an ordinary mirror. In this case, the image does not flip upside down. If it did, when 

you went into your bathroom, you would see a person brushing teeth standing on his or 

her head! Instead, what an ordinary mirror does is it flips left and right. If you hold a 

toothbrush in your right hand, the person in your mirror is holding it in his or her left hand. 

If you have letter “b” on the front of your shirt, it would appear as letter “d” in the mirror. 

This is negative multiplication. If we consider the ordinary sense as positive (e.g., sense of 

“b” is positive), the image (“d”) is negative. So, a mirror is essentially a function that 

multiplies its input by -1. Note that the magnitude is 1 because ordinary mirrors don’t 

make the image larger or smaller, as convex lenses do.  

Now, how do you find out what happens with negative multiplication? As with the convex 

lens, you start with a “negative object” — e.g., a letter that was flipped to begin with. So, the 

negative input supplied to a negative multiplication operation yields a positive result (i.e., 

“d” would become “b”). This is exactly why ambulances have the word AMBULANCE 

written in flipped letters on the front (see figure below). A driver looking through his or her 

function multiplyByNegative10( input )  
{ 
 result = -10 * input 

 return result 
} 
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rear-view mirror at an ambulance that is coming from behind, would see the word 

AMBULANCE correctly. This is an everyday application of negative multiplication.  

 

 
 

The above analogies show that multiplication is not just one simple operation. It’s actually, 

two operations in one. We can think of these two operations as: 

• Magnification (also known as scaling, or amplification) 

• Reflection (Also known as flipping, inverting, negation, sense reversal, or rotation by 

1800). This happens when one of the inputs is negative. When one of the inputs is 

negative, it reverses the “sense” of the other input (i.e., flips the other input).   

Multiplication by a positive number can be always thought of as plain magnification or 

scaling. However, multiplication by a negative number results in reversal of “sense” or 

reflection, in addition to magnification. A convex lens can perform both operations, by 

varying the distance to the object. 

Now, let’s see how this reflection happens with numbers. In the following figure, we look at 

multiplication by -1. Let’s start with the green arrow going from 2 to 6. If we multiply the 

starting and ending positions of the green arrow by -1, we get the red arrow, going from -2 

to -6. As you can see, the red arrow is a reflection around 0. That is, if we were to place a 

vertical mirror at zero, the red arrow will be the reflection of the green arrow. Similarly, 

the green arrow is a reflection of the red arrow. The red arrow is from -2 to -6, and if we 

multiplied these coordinates by -1, we get the green arrow from 2 to 6. This clearly shows 

how multiplying by -1 acts as reflection (or rotation by 1800 around zero).  

 

If we consider forward direction of the x-axis as positive, a positive object (green arrow) 

multiplied by -1 gives us a negative object (red arrow). Similarly, a negative object (red 

arrow) multiplied by -1 leads to a positive object (green arrow). If we used -2 instead of -1 

as the multiplier, it would do magnification, in addition to reflection, as shown below. 
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Quick quiz: Based on the above discussion, if we wanted a function to model a mirror, what 

function would you use?  

 

 
The same intuition applies to division. Why? Because, division is the inverse of 

multiplication. What does that mean? If we send an input through multiplication (say 

multiply by -5) and if we send the result through division (divide by -5), we should get the 

original input. Therefore, if multiplication by -5 reflected the original input, division by -5 

should reflect it back to produce the original input. As an example, in the above figure, we 

multiplied the green arrow by -2 to get the red arrow. How would we get the green arrow 

back from the red arrow? We have to divide the red arrow by -2.  

 

This discussion should help you get a clear intuitive understanding of multiplying by 

negative numbers (and multiplication in general). Rather than remembering that a 

“negative times negative is positive”, now you have clear real-world analogies to 

understand multiplication. Further, now you know that multiplication is in fact two 

operations built into one — magnification and reflection (sense reversal).  

In mathematical modeling of the real world, it should be noted that negative multiplication 

(or division) is meaningful only when the operation we represent can do magnification and 

reflection (sense reversal). For instance, multiplying 5 cows by -1 would be nonsensical, 

unless you represent a cow looking forward by +1 and you use multiplying by -1 to model a 

device that can rotate the cow by 1800 (similar to a mirror). As with negative numbers, the 

meaning of the result we get with negative multiplication (or with any other operator or 

function) depends on the meaning we ascribe to that operation. Algebra could care less 

about that meaning – it could be used to happily multiply cows, chickens, or apples or 

anything we ask it. Finding the meaning of that abstract operation is entirely up to us and 

should be done according to the models we build. 

Multiplying by a negative number is both magnification and reflection 
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3.4 Go Forth and Multiply, err…, Exponentiate 

If we can multiply once, we can do it any number of times, repeatedly! That is called 

exponentiation (or raising a number to a given power). As an example, 5 ∗ 5 ∗ 5 can be 

written as 53, with 3 as the exponent (power).  

 

Notice that exponentiation is an operator (a function) with two inputs. If we model this 

exponentiation operator as a two-input function named “power”, 53 could be also written as 

power(5, 3), as shown in the Visual Model below. Similarly, x ∗ x ∗ x ∗ x is x 
4, with an 

exponent (power) of 4, and can be written as power(x, 4). Instead of using an explicit 

operator symbol like + or ∗, exponentiation is expressed using superscript to indicate the 

exponent. There is nothing magical about the superscript; it is just a convention to omit an 

explicit operator, the same way we omit + sign before a positive number. If it is confusing, 

you can use the “^” operator explicitly to represent exponentiation, as some programming 

languages do — e.g., 53 can be written as 5^3.  

 

 
 

The same way repeated addition leads to multiplication, repeated multiplication leads to 

exponentiation. As an example, the computer code for producing the cube of an input (i.e., 

an input raised to the 3rd power) is given below:  

 

 

One place you can commonly find exponentiation is in scientific notation. For instance, 

221 can be expressed as 2.21×102 in scientific notation, because 102 is 100 and 221 = 2.21 ∗ 

100.  The scientific notation uses powers of 10. 

 

Exponentiation is a function (an operator) — i.e., 53 = 5^3 = power(5, 3) 

function cubeInput( number )  
{ 
 result = number * number * number 

 return result 
} 
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There are some consequences of our definition of exponentiation. If we multiply 53 and 54 

together, we get 7 factors of 5: 

 
(5 ∗ 5 ∗ 5) ∗ (5 ∗ 5∗ 5 ∗ 5) = 5(3 + 4) = 57 

 
In other words, the exponents just get added together. Similarly, if you divide 54 by 53, you 

get just 5, meaning that exponents get subtracted as shown below: 

  

54 / 53 = 5(4 - 3) = 51 = 5 

 

According to the above rule, what is 53/53? It is 5(3 − 3) = 50. However, 53/53 is just 1, 

because we are dividing a number (53) by itself. Therefore, any number (say x) raised to 

power zero is just 1. We can write this as x0 = 1. This is just a consequence of our definition 

of power function and there is nothing magical about it. 

 

 

Subtraction of exponents can lead to negative exponents: if we divide 53 by 54, we get 

5(3 − 4) or 5-1. Notice that 5-1 is equal to fraction 1/5 because 1/5 can be written as 50/51, or 

5(0 − 1). Consequently, to represent fractions in scientific notation, we use negative 

exponents: for instance, 0.12 is written as 1.2×10-1.  

 

What about fractional exponents? If we multiply 3½ by 3½, we get 31 because exponents 

add up when we multiply numbers. If we multiply the same number (3½) by itself, we 

square it. That means we get number 3 when we square the number 3½. This means that 3½ 

is the square root of 3. Therefore, fractional exponents can be used to express the square 

root, the cube root, and, in general terms, the nth root of a number. 

 

 Square root:  x½ = √x  (e.g.,  3½ = √3)   

 nth root:  x1/n = √𝑥
𝑛

  (e.g., 21/3 = √2
3

)  

 

x 0 = 1 

x1/ n is the nth root of x, or √𝑥
𝑛

  (e.g., x½ = √x) 

x -1 = 1 / x 
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Square roots (and nth roots) of some numbers produce a new set of numbers we have not 

seen so far. For instance, if we take the square root of 2 (i.e., √2), or the square root of 3 

(i.e., √3), the resulting number cannot be expressed as a fraction. In other words, they are 

not rational numbers. If we represent √3 in decimal notation, there will be an infinite 

number of digits. We call such numbers irrational numbers. Fractional exponents are one 

way we get these irrational numbers. We could get them by other means too. For instance, 

π, the ratio between the circumference of a circle and its diameter, is also an irrational 

number. 

 

 

Rational numbers and irrational numbers taken together form real numbers. A real 

number can represent any number on the number line, which is shown below:  

 

 

Remember how we got here? We started with whole numbers, that were invented for 

counting. Then, we saw that, whole numbers could not represent all objects, especially the 

objects that result from arithmetic operations when we use whole numbers as input. 

Therefore, we had to come up with fractions, negative numbers, and zero to represent real-

world objects. They were called rational numbers. Finally, exponentiation showed us that 

there are some other objects we cannot represent with just rational numbers, giving us 

irrational numbers. All of these numbers taken together form real numbers we use every 

day to represent the real-world objects.  

 

 
I want you to take a moment to reflect on the approach we took. Rather than drawing a 

number line and defining all numbers on it as real numbers, we started small and expanded 

the definition of “numbers” step by step. We started with an abstraction (whole numbers) 

that was woefully inadequate in representing the real world. We gradually expanded that 

abstraction until our abstraction became richer, enabling us to represent a whole lot of 

real-world objects. This process illuminated the intuition behind numbers, and what each 

type of number can actually represent as well as what it cannot. This process, also forced us 

to look at our everyday arithmetic operations in a new light. Especially, we got to see the 

true nature of multiplication.  

Fractional exponents can produce irrational numbers 

Phew! Finally, we have all real numbers on the number line!  
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Ok, are we done then? Not quite. Exponentiation introduced us to fractional exponents — 

for instance, square roots. However, what if we have to find the square root of a negative 

number, like √-1? We have not yet seen a number w that gives a negative number, when 

squared. Any number, whether positive or negative, when multiplied by itself produces a 

positive number. Therefore, there is no real number that can represent the square root of a 

negative number! This is another prime example of functions (operators) exposing the 

inadequacy of real numbers (i.e., real numbers are not the “real deal” either). We will see 

the true nature of numbers in Chapter 6, when we meet complex numbers. 

3.5 The Story So Far 

As we mentioned before, this is a story about the function dynasty. In the first two 

chapters, we looked at how functions came into existence, and the properties and problems 

they have in common. This chapter was dedicated to looking at what they consume and 

produce. Functions are so successful because of the things they can produce (output) from 

what they consume (input).  

 

Functions are really savvy consumers. They can easily detect when something they are 

about to consume is not up to snuff. Operators, which are functions, quickly showed that 

whole numbers are not the real deal, and showed us how whole numbers are inadequate at 

representing real-world objects. When we used whole numbers as inputs, functions gave us 

objects that were not whole numbers, forcing us to expand our horizons, and showed us 

what numbers should look like.  

 

One particular function, multiplication, turned out to be quite intriguing and versatile. In 

addition to scaling the input, we saw that it can reflect the input (rotate by 1800) or reverse 

its sense. We are still far from discovering all of the tricks multiplication has to offer. In the 

following chapters, multiplication will show us more of its amazing capabilities.  

 

Just as we discovered all of our real numbers and breathed a sigh of relief, the square root 

function threw us another curve ball: √-1. As we will see in a following chapter, finding a 

way to solve this problem will again expand our horizons.  

 

Some functions are more useful to us than other functions when it comes to modeling the 

real world. If you look at your tool box, you are more likely to find screw drivers, pliers, and 

spanners than, say, a jack hammer, because the former tools are more commonly used for 

everyday projects. Similarly, if you look at the function dynasty, some members are much 

more useful than the others. The next chapter is dedicated to those common folks.  
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4 COMMON RELATIONSHIPS (FUNCTION TOOLBOX) 

Chapter Overview: This chapter methodically examines four function families that we 

meet frequently in our modeling activities in Engineering and Physics. For each family, we 

will examine its inverse and reciprocal families and finally look at how to combine the 

members of these families to create more intricate models.  

If we look at the real-world, relationships among people are evident everywhere: 

relationships between parents and children, teachers and students, businesses and clients, 

people and their pets, and so on. Some of these relationships are more important to us than 

others. For example, the relationship you have with your parents is more important than 

the one you have with your hair dresser (we hope!). 

 

Similarly, in math, we can come up with various sorts of relationships. However, some 

relationships are more fundamental than others. They are more useful to us, and more 

importantly, they are quite versatile in building real-world models. We are going to study 

some of these fundamental relationships (functions) in this chapter.  

 

We are going to explore functions in a systematic way. Altogether, we will look at four 

function families: 

 
1) Power Functions 

2) Polynomial Functions 

3) Exponential Functions 

4) Trigonometric (Periodic) Functions  

First, we will look at the first three families, followed by functions that are related to them 

in two special ways: 

a) Inverse of functions in each family:  who can undo the effects of a function 

b) Reciprocal of functions (i.e., 1 / function) in each family: who produces less output 

(proportionately) when a function produces more output (and vice versa)  

Then, we will look at the 4th family, Trigonometric Functions, along with their inverse and 

reciprocal functions, separately, in Section 4.6 due to the different treatment they need. 

Finally, once we have all our basic tools, we are going to look at how to create more 

powerful tools by combining them. That is, we will look at how to compose more elaborate 

functions (models) using basic functions of the above 4 families.  
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In this book, unlike in many other math texts, functions are also referred to as models. This 

is done intentionally to emphasize why we use functions. We look at functions as tools to 

build mathematical models of the real-world relationships. 

4.1 Power Function Family: How to Grow Your Power 

If an input wants to have more power, what can a poor input do? Well, it has one solution. 

Even ordinary people can wield great power, if they have powerful friends. In algebra, that 

powerful friend is known by the name of multiplication, who can increase the power of an 

input twofold, tenfold, or even hundredfold.  

If we have an input named x, multiplication can be used to multiply x by itself, any number 

of times, to create powers of x. For instance, input x multiplied by itself is x2, and x2 

multiplied by x again is x3, and that multiplied by x again is x4. This exponentiation 

operation, as we saw in Section 3.4, creates the power function family. Each member of 

the family has the ability to multiply its input by itself for a given number of times:  

 

  f (x) = x1    [ x ]     

 g (x) = x2    [ x ∗ x ]  

 h (x) = x3    [ x ∗ x ∗ x ] 

 
In general, for a given positive integer constant n, we can describe this family as: 

  

  f (x) = x 
n        (1) 

 

Again, note that n is a positive integer constant. Let’s look at an example: when n=3, we get 

the power function h (x) = x3. This is one member of the family. We can also express x3 as 

power(x, 3), using the more general two-input power function (exponentiation operator) 

we met before in Section 3.4. 

 

To make our power function a little bit more general, we can multiply the output of a 

power function by a scalar coefficient, a, to obtain: 

 

  f (x) = a x1 

 g (x) = a x2 

 h (x) = a x3 

 

Or, in more general, we can write this as: 
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  f (x) = a xn        (2) 

 

When a=1, (2) becomes (1). Notice that the only operator (function) involved in creating a 

power function is multiplication. For instance, there is no addition operator involved. 

Additionally, notice that, an expression of the form a x2 is called a term, as we learned in 

Section 1.5. Therefore, each power function is a term with a different power.  

 

Let’s take a closer look at a few important members of this power function family. Again, 

remember, they are important because they are useful to us and we would need them for 

creating models of the real world.  

 
 

 

4.1.1 LINEAR TERM 

When n=1 in equation (2) above, we get the linear term a x, where a is 

a constant and x is the input. We use models with linear terms 

constantly, without even thinking about it. If one apple costs $1, five 

apples cost $5. That’s a linear relationship. In a linear relationship, 

the output changes proportionately to the input. If we change the 

input by some amount, the output changes by the same amount 

multiplied by a constant. It is as simple as that. If the constant 

multiplier is negative, the output changes in the opposite direction — 

i.e., when we increase input, output increases in the opposite “sense”.  

 

In a linear model,  f (x) has a root at zero, because when we use x=0 as our input,  f (x) 

outputs 0. That is,  f (0) = 0.  In fact, zero is the only root. This root leads to some interesting 

properties, as we will see shortly. 

 

Power Function family members with increasing powers 
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A geometric representation of the function  f (x) = a x is given in the 

Visual Model to the right. If we insert an arrow with some magnitude 

and “sense” as our input, the possible outputs are given at the output. 

The output can be scaled-up or scaled-down arrows with the same 

sense (when a is positive), or the opposite sense (when a is negative). 

  

Let’s take a magnifier as an example. Say a 

magnifier multiplies the height of an object by 3. 

If an object is 1 inch tall, the image is 3 inches tall. If we increase the 

height of the object from 1 inch to 2 inches, the image becomes 6 

inches (from 3 inches). So, for every inch we increase the height of the 

object, the height of the image grows by the same number of inches (3 

inches). If we double the height of the object, the height of the image 

doubles too. This is a relationship with a linear term. 

 

As a quick quiz, can you explain what the function  f (x) = x models, when a = 1? Do you need 

a hint? It’s called the “identity function”. Why? Because its output is the same as (identical 

to) the input. It doesn’t do anything quite useful. It’s a trivial relationship.  

 

OK, let’s look at a real-world relationship: the flashlight. If you look at a traditional 

flashlight, it has batteries, an incandescent lightbulb (not LEDs), and a switch. When you 

turn on the switch, current flows through the lightbulb, making it light up. The thin wire 

(filament) in the lightbulb offers resistance to the flow of current. Due to this resistance, the 

filament heats up and glows, producing light. You may have noticed that as batteries 

become weaker (older), the lightbulb gets dimmer, because the batteries cannot produce 

enough “pressure” to “pump” current through the thin wire. This relationship is 

represented by a fundamental law in electrical engineering: Ohm’s Law.  

 

If you are not familiar with electrical terms, a good analogy is water flowing through a pipe. 

If the diameter of the pipe is small, it is harder to push a lot of water through it. Thus, the 

pipe offers “resistance” to the flow of water. Say we want to increase the amount of water 

(current) that flows through this pipe. Then, we have to apply more and more pressure 

(voltage) to get more and more water (current) through the pipe.  

 

This relationship between the current (amount of water), the voltage difference (pressure 

difference), and the resistance of the bulb (the resistance of the pipe), is modeled by Ohm’s 

Law as: 

 

 Voltage Difference = Current  ∗  Resistance 
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Or more succinctly: 

   V = I ∗ R 

 

Or in terms of our analogy: 

 

 Pressure difference = Amount of water through pipe ∗ Resistance of the pipe 

 

Using our Visual Model, we can immediately see that the 

voltage is a function of two variables — namely, Current and 

Resistance. However, if we fixed the value of Resistance as in 

our example (i.e., we pick a certain light bulb), then Resistance 

becomes a constant input. Then, the relationship between 

Voltage and Current becomes linear.  

 

This is a common technique when studying functions with 

multiple inputs. We fix all but one input, thereby making those inputs constant. The 

function now has only one variable input. We will use this strategy throughout this chapter 

to analyze various laws of physics that involve more than one input.  

 

Ohm’s Law is one of the most fundamental laws of electricity. All your electronic gadgets 

follow this fundamental law in one form or another. Isn’t it amazing that we can analyze it 

using a simple model, with just one linear term (for a given resistance)? 

 

The computer code for Ohm’s Law is given below. If you provide the current (in Amperes) 

and the resistance (in Ohms) as input, the function outputs the voltage (in Volts). 

 

 
The graph of Voltage vs. Current through a resistor is given below. Rather unsurprisingly, 

the graph of this linear term is a straight line. The graph shows the voltage difference 

(output) across a given light bulb (i.e., a resistor) as we increase the current (input) 

through it. When we have a linear relationship like this, we say that Voltage is directly 

function getVoltage( current, resistance )  
{ 
 voltage = current * resistance 

 return voltage 
} 

volts = getVoltage( 3, 5 )  // input: 3 Amps, 5 Ohms 

print( volts )              // output: 15 Volts 
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proportional (or simply, proportional) to Current. Notice that voltage and current have a 

“sense” or “direction”, so they can be negative as well.  

 
 
 
 
 

 
 
Let's look at another law: Newton's second law of motion: 

  

  Force  = mass ∗ acceleration 

Or, more succinctly, 

           F  = m a 

 

Again, Force depends on two input variables. However, for a given mass (for a given object 

with fixed mass), the relationship between force and acceleration is linear. If we want to 

double the acceleration, we have to double the Force applied to the object. Computer code 

to calculate the force for a given mass and acceleration is given below: 

 

 

function getForce( mass, acceleration )  
{ 
 force = mass * acceleration 

 return force 
} 

force = getForce( 3, 5 )   // input: 3 kg, 5 m/s2 

print( force )             // output: 15 Newtons 
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4.1.1.1 Reducing Non-Linear Models to Linear Models 

A linear model is a very simple model to analyze and understand. Unfortunately, the nature 

is not always that simple. Many important physical relationships are not linear. 

Fortunately, there is a trick we can use to analyze non-linear models as linear models. We 

used this tactic when working with Ohm's Law in the previous lesson. Now, we are going to 

use the same trick on a more complicated relationship. 

 

This time, we are going to look at the ideal gas law, which is a fundamental relationship in 

physics about a gas in a container. It is expressed as: 

 

         PV  = kT 

or 

    Pressure ∗ Volume  = k ∗ Temperature 

 

where k is a constant (which is equivalent n∗R, where n is the number of moles of gas and R 

is the universal gas constant). Whenever a gas (or air) is in a container, whether it is in a 

cylinder of a car engine, or in your lungs, this law models how that gas behaves.   

 

How should we look at a model like this? We always want to look at relationships between 

inputs and an output. There are three variables in this equation. Therefore, let’s reorganize 

this equation in 3 ways, based on the output variable.  

 

 P = kT / V        (1) 

 V = kT / P        (2) 

 T = PV / k        (3) 

 

In each of the above relationships, our output is expressed as a function of two variables (k 

is constant if we keep the number of gas molecules constant). However, none of the above 

are linear relationships, but we can use our favorite technique to analyze them as linear 

models.  

 

Let’s start with (1). If we make V our constant input, we end up with a linear relationship 

between P and T: 

 

 P = (k/V) ∗ T        (1A) 

 

Since both k and V are constant, we can write the relationship as follows, where m = k/V: 

 

 P = mT ,        (1B) 
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 where m is a constant.  

 

What does this mean? If the volume V is constant (i.e., we do not change the volume of the 

container the gas is in), then, if we increase temperature T, the pressure P also rises 

proportionately. Whoa! We have a nice linear relationship. The slope m is k/V, which 

means, smaller the V, larger the m is. This means that if the gas is in a smaller container, 

when temperature T is increased, pressure P increases at a faster rate (compared to if the 

volume was larger). This makes physical sense. If the same number of gas molecules is in a 

smaller container, molecules are closer together. Thus, as we increase temperature, the 

vibrating molecules exert more pressure on the container walls. Do you see how much a 

linear model can teach us? 

 

Now, let’s take equation (2) and do a similar analysis. This time, to make this a linear 

relationship, we will make P a constant. That is, the gas will now be under a constant 

pressure. We begin with: 

 

 V = kT/P 

By grouping the constants together, we get: 

 V = (k/P) ∗ T        (2A) 

If we substituted constant m for k/P we get: 

 V = mT        (2B) 

 

Notice that this m is different from the m we used in (1B). What does this 

model tell us? If we do not change the pressure (and the number of gas 

molecules), when we increase the temperature T, volume V increases 

proportionately. For instance, the figure to the right shows a piston (green) 

of some weight applying pressure on a gas (blue) in a cylinder. As 

temperature rises, V increases raising the piston. In terms of physics, when 

we increase the temperature, molecules vibrate more energetically, forcing the volume to 

increase. Let’s look at m as we did before. Since m = k/P, if we have lower pressure (a 

lighter piston), m is higher and the Volume increases at a faster rate as we increase the 

temperature, compared to a situation where the pressure is higher (a heavier piston).  

 

We can do a similar analysis with (3):  

 T = PV / k 

First, let’s make pressure P constant. Grouping constants, we get: 
 



78 
 

 T = (P / k) ∗ V        (3A) 
 
This is the same relationship as (2A) between V and T. Similarly, if we make V constant, we 

get:  

 T = (V / k) ∗ P        (3B) 
 
which is the same relationship as (1A) between P and T. Therefore, (3) is just a different 

way of expressing (1) and (2) – i.e., (3) is not independent from (1) and (2).  

 

This example should clearly show you how we can make use of linear models to analyze 

more complicated non-linear relationships. You will find this technique quite helpful in 

analyzing many real-world models.  

4.1.2 QUADRATIC TERM 

A relationship with a quadratic term takes the form  f (x) = k x2, where 

k is a constant and x is the input. The input is multiplied by itself, 

making the input more “powerful” in creating the output. As we 

discussed at the beginning of this chapter, this is the hallmark of 

power functions.  

We can look at how this works using 

geometric objects, as shown in the Visual 

Model. If we input length x, at the output, we get objects 

represented by k x2 (i.e., k∗length2) — i.e., objects with an area, like 

squares, circles, rectangles, triangles, etc. For instance, we can 

represent a square with k=1 (i.e., 1x2), an equilateral triangle with 

k = ½ (i.e., ½ x2), and a circle with k = π (i.e., πx2). Therefore, the k x2 

term signifies area, if the input is treated as length.  

Note that, even if the input has a sense (negative or positive), the 

output does not, because we square the input. That is, both positive and negative inputs 

map to the same positive output. Further, notice that  f (x) = k x2 has a root at zero because 

the output is zero when the input is zero.  
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As a real-world example of a relationship of the form 

f (x) = k x2, let’s examine the electrical power dissipated by a 

resistance (e.g., a lightbulb) due to current flowing through it.   

Power = (Current)2 ∗ Resistance  

Again, notice that Power is a function of two variables. 

However, if the resistance is fixed (e.g., for a specific 

lightbulb), the relationship between Power and Current is 

quadratic. Computer code for this model is given below. 

 

 
What’s the significance of this law? Have you ever seen a blown fuse? How about a melted 

wire? Have you boiled water in an electric kettle or made toast with an electric toaster? All 

of this is made possible by this law.  

When current flows through a resistor, the power generated is dissipated as heat. This 

could have both useful and disastrous effects in the real-world. If an excessive amount of 

current flows through a piece of wire, which has some resistance, that could melt the wire 

and cause an electrical fire. The same happens to a fuse, when it blows, but this time, 

protecting valuable equipment.  On the other hand, the heat generated by a resistor can be 

used to heat up water (in an electric kettle), air (in a space heater), or make toast (in a 

toaster). 

Here is the most interesting part: the power is proportional to the square of Current, which 

means that, if we double the current, the power output quadruples. That is why it is so easy 

to start electrical fires. Did you realize the role played by a power function here? It 

increased the “power” of the Current (input), allowing the input to have a bigger (more 

powerful) effect.  

I want to draw your attention to one statement I made above: “the power is proportional to 

the square of Current”. This means that the relationship between Power and Current2, is 

linear. Notice that I said Current2, not just Current. If you have a difficulty understanding 

this, replace, Current2 with another variable like u. Then, Power = u ∗ Resistance. This is 

function getPower( current, resistance )  
{ 
 power = current * current * resistance 

 return power 
} 

watts = getPower( 3, 5 )   // input: 3 Amps, 5 Ohms 

print( watts )             // output: 45 Watts 

 



80 
 

clearly a linear relationship. Variable substitution is another technique for looking at non-

linear relationships as linear relationships, because it makes analysis simpler.  However, do 

not forget that the underlying relationship between Power and Current is quadratic. 

 

 
 
The graph of the quadratic function  f (x) = 2x2 is shown above, with the linear functions 

h (x) = x and g (x) = 2x. Notice how we can obtain  f (x) by multiplying h (x) by g (x). For 

instance, at x=3, h (x) is 3 and g (x) is 6. By multiplying these two values together, we can 

find f (6): 3∗6=18. This is shown by the blue, green, and brown dots on the graph. This 

shows how we can obtain a quadratic term as a product of two linear terms. Further, notice 

that  f (x), being a quadratic function, grows much faster than the linear functions g (x) or 

h (x). There is one other important thing, shown by the yellow dots on the graph. See 

how  f (x) has the same output when the input is 2 and -2. That is, 

f (2) = f (-2) = 8 

This shows that there are two inputs that produce the same output. That is,  f (x) =  f (-x), a 

property we call even symmetry (symmetry about y-axis), because every power function 

with an even power has this property.  As we will see shortly, this property becomes a real 

headache for us when we have to find the inverse of functions with this property. 

 

 

Power functions with even powers have even symmetry :  f (x) = f (-x)   
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4.1.3 CUBIC TERM 

A relationship with a cubic term takes the form  f (x) = k x3, where k is a constant and x is the 

input. As with all power functions, the input is made “more powerful” by multiplying itself 

repeatedly to raise it to the 3rd power.  

We can look at cubic terms as geometric objects, 

as shown by the Visual Model to the right. If we 

input some length x, at the output, we get objects 

that are represented by cubing that length — i.e., 

x3 or length3. These are objects with a volume, 

like cubes, spheres, prisms, etc. For instance, we 

can represent a cube with k =1 (i.e., 1x3), a 

triangular pyramid (tetrahedron) with k=√2/12 

(i.e., √2x3/12), and a sphere with k = 4π/3 (i.e., 4πx3/ 3). Therefore, k x3 

signifies volume, if the input is treated as a length.  

If the input has a “sense” (negative or positive), the output will have the same sense too. 

That is, positive inputs produce positive output and negative inputs produce negative 

output. Therefore, if a physical model produces positive outputs, such models should 

accept only positive inputs.  

 

 

function getVolumeOfSphere( radius )  
{ 
 PI = 3.14159265 

volume = 4 / 3 * PI * radius * radius * radius 

 return volume 
} 
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Computer code for calculating the volume of a 

sphere of a given radius is shown above. You will 

most likely see a cubic model when you want to 

calculate the volume of some 3D object.  

The graph of the  f (x) = x3 is shown in the figure. Do 

you see that every input value has a unique output 

value, unlike with the quadratic term? Because of 

this, we can find the inverse of cubic functions.  

Notice that  f (x) = k x3 has a root at zero, because 

the output is zero when input is zero. 

This graph is symmetric around the origin — i.e., if 

we rotate this graph by 1800 around origin, it is 

unchanged. That is, f (x) = − f (-x). Note that − f (-x) 

means that we use an input with sense reversed 

and then reverse the sense of the output. This 

property is also true for the linear term we saw before. In fact, every power function with 

an odd power has this property. Therefore, this property is called odd symmetry. 

 

 

4.2 Polynomial Family: How to Accumulate Different Powers 

In the previous section, we met the members of the Power Function family. If you add two 

or more members of the power function family, also called terms, you get a polynomial. 

You can think of this as assembling a team of family members from the power function 

family, where each member is contributing a different power term to the output. For 

instance, 

  f (x) = 5 x3 + 7x2 − 9x + 5 

is a polynomial, with 4 terms. “But”, you may object, “5 is not a member of the power 

function family”. Trivially, it is, because x0 is 1, and hence 5 can be written as 5x0. This is 

called the constant term, and if we express it as  f (x) = 5, it becomes a constant function, 

which has a constant output, no matter what its input is. Can you see how different 

members of the power family contribute to create a polynomial? 

 

Power functions with odd powers have odd symmetry:  f (x) = − f (-x)   
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Since there are many different members of the Power Function family, there are many 

ways to combine these members with addition. Therefore, Polynomial Functions are a 

family as well. We will now take a look at the most common functions in this family.  

4.2.1 LINEAR MODEL (LINEAR FUNCTION) 

A linear model consists of both a linear term and a constant term. It 

takes the form,  f (x) = a x + b, where both a and b are constants.  

For instance,  f (x) = 2x + 8 is a linear function. The number 8 is the 

constant term. It does not change with the input. Therefore, it will 

always shift the output by a given offset (8, in this case). As an 

example, compare  f (x) = 2x + 8 and g (x) = 2x. Function g (x) is the 

same as  f (x), but without the constant term 8. The output of  f (x) is 

always 8 units more than the output of g (x). As shown below,  f (x) 

is always 8 units above g (x), which does not have any constant term. That’s the effect of a 

constant term on any model (not just the linear model).  

 

A polynomial: accumulation of different powers 
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The linear model is quite common. For instance, if you want to convert from Celsius (0C) to 

Fahrenheit (0F), you would use the following linear model: 

 Fahrenheit = (9/5) ∗ Celsius + 32   

You should be able to immediately recognize this as a linear model, with a constant offset of 

32. Why do we have an offset of 32? Remember, water freezes at 0 0C or 32 0F. Therefore, 

when the input is 0 0C, the output has to be 32 0F. The computer code for converting Celsius 

to Fahrenheit is given below.   

 

 
In the real-world, constant terms are often necessary when modeling relationships. For 

example, say you buy pencils, each at $1. Therefore, if you buy 10 pencils, you would have 

to pay $10. That’s a variable cost, because the cost varies, linearly, with the number of 

pencils. However, you may have to pay a shipping charge of $5 regardless of the number of 

pencils you buy. That’s a fixed cost, which is modeled using a constant term. So, your model 

becomes: 

function convertCelsiusToF( celsius )  
{ 

fahren = celsius * 9 / 5 + 32 

 return fahren 
} 

fahren = convertCelsiusToF( 25 ) // input: 25 
0C 

print( fahren )                  // output: 77 
0F 
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  Total cost = $1 ∗ Number of Pencils + $5 

4.2.1.1 Significance of the Absence of a Constant Term 

In a linear model, the absence of a constant term leads to a root at zero (you can generalize 

this observation to any polynomial). As we saw earlier, the constant term introduces a shift, 

or an “offset” or “bias”. That is, in such a relationship, the magnitude of the output is 

different based on whether the input is negative or positive.  For instance, the inputs -5 and 

+5, do not produce outputs with the same magnitude (hence “biased” towards either 

negative or positive inputs). For instance, on the above graph for  f (x) = 2x + 8,  f (5) is 18 

but f (-5) is -2. However, on the graph for g (x) = 2x, g(5) is 10 and g(-5) is -10.  

 

When there is no constant term, the relationship has no bias. Therefore, we call it 

symmetric about 0.  Since f (x) = a x has no constant term, this relationship is symmetric 

about 0. Say we input a value x and get an output y. If we input the negative of that value 

(-x), we get the negative of that output (-y). Notice that the magnitude of output does not 

change. If we change the sign of the input, the sign of the output changes, which we can 

express as f (-x) = - f (x). That is, 

 
if  f (input) = output,  then  f (−input) = −output.  

 
The following graph shows this fact for f (6) and f (-6). 
 
 
 

 
 
 

What are the real-world implications of this symmetry?  As an example, let’s look at 

Newton’s Second Law, F = m a. For the purposes of this example, let’s consider east as our 
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positive direction. When determining force using F = m a, both the force (F) and acceleration 

(a) must be in the same direction. That is, if acceleration is in the eastward direction, the 

force is in the eastward direction too. What if we have a negative acceleration?  Then the 

object is accelerating westwards. When that happens, from F = m a, the force (F) has to be 

negative too, since acceleration is negative. Thus, the force would be pushing the object 

westward. The magnitude of the acceleration is unchanged in both cases. Only the direction 

changes. In other words, this means that the relationship F = m a holds if we apply it to an 

object moving eastwards or westwards.  

 

The same reasoning applies to the Ohm’s Law, where the current and voltage have a 

direction. Physical laws usually show this symmetry, and mathematically, in a linear model, 

you can see how it shows up as a root at zero — i.e., without a constant term or “bias”. For 

physical laws, symmetry is a huge deal. It tells a fundamental property about the universe 

we live in. For instance, if Newton’s Second Law did not have symmetry, we may have to do 

more work to go east compared to going west! Such a universe would be fundamentally 

different from the one we live in. 

4.2.1.2 Linear Models of Multiple Inputs (Linear Combinations) 

So far, we have looked at linear models of just one input. How about linear models 

(functions) of multiple inputs? Such functions are called linear combinations, because 

they build a “linear” function by “combining” multiple linear terms, each with a single input. 

Let’s look at an example.  

Let’s say you want to make a special punch. You mix 2 cans of orange juice, 3 cans of apple 

juice, and 1 can of mango juice to make the punch. As you may have noticed, I am using 

some artistic license when it comes to food recipes, but you need to work with me here. 

The final product (the punch) is the result of a linear combination. In other words, the 

punch you made is a linear combination of orange, apple, and mango juice: 

 2∗orange + 3∗apple + 1∗mango    [ a linear combination ] 

Given that you have to use the above three juice varieties, when making this punch, you 

were allowed to use only two operations: pick the number of cans from each variety, and 

then add them together to the punch bowl. Similarly, a linear combination allows only 

those two operations: 

(1) Each input is multiplied by a scalar   [ pick the number of cans ] 

(2) Each term produced in (1) is added together  [ add to the punch bowl ] 

Those are the only two operations allowed in a linear combination (for a given number of 

inputs). For instance, multiplying one input by another is not allowed. Similarly, you cannot 
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exponentiate (raise the power of) an input, take the square root of an input, nor take the 

logarithm of an input. I think you get the point. Thus, a linear combination is a special 

(restricted) expression of multiple variables.  

You can look at a linear combination as a sum of multiple linear 

terms, where each linear term has only one input variable. In fact, 

rule (1) above creates a linear term of one variable and rule (2) 

just adds those linear terms together. For instance, in our punch, 

2∗orange is a linear function, and so is 3∗apple. More formally, 

we can write a linear combination of two variables x1 and x2 as: 

  
f (x1, x2) = a1 x1 + a2 x2 

 
Notice that this is a function of two variables. Further, each term (e.g., a1 x1) can be thought 
of as a linear term of one variable.  
 

 
In essence, you are adding a bunch of input variables together, where each input variable is 

multiplied by a scalar. That’s a linear combination. You can think of punch as a linear 

combination of juices. Similarly, you can think of salt water as a linear combination of salt 

and water, or air as a linear combination of Nitrogen, Oxygen, and Carbon dioxide. 

If you think about it, the linear function  f (x) = a x + b can be viewed 

as a linear combination of two inputs: one variable input and one 

constant input, as shown with the Visual Model. In fact, we can 

generalize this to other polynomials, as we will see shortly. 

Although, a linear combination looks quite trivial, as you will see in 

future chapters, linear combinations are quite versatile and 

fundamental. We will encounter linear combinations throughout 

this book in sections on polynomials, series, complex numbers, 

vectors, and matrices — all these are linear combinations of different inputs.  

 

4.2.2 QUADRATIC MODEL 

A quadratic function is nothing but a quadratic term plus a linear function. Therefore, it 

takes the form  

 

 f (x) = a x2 + b x + c 

A linear combination is a sum of multiple linear terms 
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The above general form has two roots, given by the famous quadratic formula. Note that, 

the roots can be complex (more on this in Section 4.2.4.2). We derive the quadratic formula 

by completing roots, which is factoring. That is, we can represent any quadratic model as a 

product of its factors. Recall that this is true for numbers: 

 

  6 = (2)(3) 

 

Here, 2 and 3 are the factors of 6. The product of these factors leads to number 6. Similarly, 

the product of two factors can represent a quadratic model: 

 

 a x2 + b x + c = (a1x + b1)(a2x + b2)  

 

For example:  

 g (x) = x2 + 2x – 3 = (x + 3)(x − 1)  

 

Another example:  

 f (x) = 2x2 – x – 3 = (2x – 3)(x + 1) 

 

This means that (2x−3) and (x+1) are factors of  f (x). If we know the factors, we know the 

roots. Function  f (x) is zero when either of those factors is zero, because zero multiplied by 

anything is zero. 

 

So,    f (x) = 0  when  2x − 3 = 0  OR  x + 1 = 0 

That is,   f (x) = 0 when  x = 3/2  OR  x = -1 

 

Now, here is an interesting intuition. Take a closer look at each factor. What kind of a model 

is that? For example, what kind of a model is 2x − 3? What kind of a model is x + 1? 

 

You guessed right! They are linear models (functions). So, what did we achieve by factoring 

the quadratic model? We decomposed it into a product of two linear models! 

 

 
This is a fascinating way to look at the quadratic model. Essentially, we can build a 

quadratic model by multiplying two linear models together. Conversely, if we have a 

quadratic model, we can break it up as a product of two linear models. That’s not all. The 

linear models give us the roots of the quadratic model. Conversely, given the two roots, we 

can build up the two linear models and multiply them to get a quadratic model.  

The quadratic model is a product of two linear models 
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Take a moment to think about this relationship between factors, linear models, and the 

roots. You can see that the linear models are the fundamental building blocks (factors) of 

the quadratic model. Hence, the roots of the linear models become the roots of the 

quadratic model!  

 

 
Recall from Section 2.3.1 that roots represent solutions of an equation. In other words, if 

we can break up a quadratic model as a product of two linear models (linear factors), we 

can solve any quadratic equation! This is exactly what the famous quadratic formula does: 

it gives the two liner factors that yield roots (solutions).  

 

The above is a general observation that holds true for any polynomial as we will see soon. 

This fact is shown graphically for the quadratic model  f (x) in the graph below, 

where  f (x) = 2x2 – 5x – 3. It has two factors, (2x – 3) and (x + 1). Let’s name these factors 

g (x) = (2x – 3), and h (x) = (x + 1). Then, we can write  f (x) as: 

 
      f (x)  = (2x – 3) (x + 1) 

  = g (x) ∗ h (x) 

 

The graphs of  f (x), g (x), and h (x) are given below. 

 

 
 

The above graph shows how we can express a quadratic model as a product of two linear 

models. For any given input value x, we can find the output of f by multiplying the output of 

A quadratic function and its two linear factors have the same roots 
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g and output of h at the same input value x.  For instance, at x=3, g (x)=3 (blue dot) and 

h (x)=4 (orange dot), and their product is 12 (brown dot), which is the output of f (3), as 

shown on the graph. Please take a moment to understand this completely. 

 

What’s the relationship between the roots of these functions? Remember, the roots are the 

input values that produce an output value of zero. Roots are shown with the yellow dots on 

the graph. The linear models have roots at x=-1 and x=3/2, as you can see from the graph. 

Those are also the roots of the quadratic function and the solutions to the equation f (x) = 0.  

Again, please take a moment to study the graph and understand this completely. 

4.2.3 CUBIC MODEL 

In the last section, we saw that a quadratic model is a quadratic term plus a linear model. 

Similarly, a cubic model is a cubic term plus a quadratic model. I think you can see the 

pattern now.  

4.2.4 GENERALIZATION: POLYNOMIAL FUNCTIONS 

Linear, quadratic, and cubic models we met so far belong to the same polynomial family. 

For instance, the cubic model is a polynomial of degree 3, because the highest order 

(power) term is x3. Similarly, a quadratic model is a polynomial of degree 2.  

 

We can extend this to higher powers of input as well. For instance, a 4th degree (quartic) 

polynomial is a x4 term (in the form ax4) plus a cubic model (cubic polynomial).  

 

You can look at a polynomial as a sum (a series) of terms, which are members of the power 

function family. For instance, a cubic polynomial can be viewed as a sum (a series) of a 

cubic term, a quadratic term, a linear term, and a constant term, as shown below: 

 

  f (x) = ___ x3 + ___ x2 + ___ x1 + ___ x0 

 

A blank space ___ represents a place to plug in a constant coefficient. More formally, we can 

represent this as: 

 

  f (x) = a3 x3 + a2 x2 + a1 x1 + a0 x0 

 

where a3, a2, a1, a0 are constants. For instance, 5x3 + 2x2 – 9x + 2 is a third-degree 

polynomial function.  
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Notice that polynomials are a family of functions. Their individual family members include 

functions like linear, quadratic, and cubic functions, among others. When we want to study 

such functions in general, we can put all of them under the umbrella of a generic 

polynomial.  

4.2.4.1 Polynomials as Linear Combinations 

Here is a different way to state what we saw above: polynomials are 

a linear combination of power functions. For instance, take the power 

functions x3, x2, and x0.  You can look at each of them as a different 

input — e.g., apple, mango, and orange juice, as in our punch 

example.  Now, if we combined these three inputs in different 

proportions, we can get a polynomial like:  

5x3 + 3x2 + 7 

Notice that this is not a function of x; rather, x3, x2, and x0 

(power functions) are the three inputs of the linear 

combination, as shown with the Visual Model. If this is 

confusing, let u = x3, v = x2, and w = x0, and we can write the 

above polynomial as: 

 f (u, v, w) = 5u + 3v + 7w 

Here, we multiplied each input (power function) by a scalar, 

and added them together. The Visual Model shows how a 

polynomial is composed out of power functions using a 

linear combination. That is, multiple power functions are 

feeding in to the linear combination. We can write this 

polynomial as a function of 3 power functions: 

 

f (x3, x2, x0) = 5x3 + 3x2 + 7 

 

4.2.4.2 The Fundamental Theorem of Algebra 

In Section 4.2.2, we saw how a quadratic model can be viewed as the product of two linear 

models. This means that the function has two roots. The Fundamental Theorem of Algebra 

generalizes this to any polynomial. It says that a polynomial of degree n has n roots. The 

roots may not be real (i.e., roots are complex) in some cases, as we will see in Section 6.3. 

Some roots may be repeated (i.e., not distinct).  

A polynomial is a linear combination of power functions 



92 
 

 

 

To summarize, a polynomial model of degree n can be expressed as a product of n linear 

functions. Each linear function is called a factor of the polynomial. The root of each linear 

factor is also a root of the polynomial. The same roots are also solutions of the 

equation f (x) = 0, where f (x) is the polynomial. 

 

 

In other words, solving a polynomial equation of the form  f (x) = 0 boils down to finding its 

linear models (factors), and finding their roots. A polynomial is a product of linear models. 

Nothing more. Nothing less. That’s it. It’s similar to factoring a number like 6. Number 6 has 

two primary factors, 3 and 2, so 3×2 leads to 6.  

 

Isn’t it fascinating that any polynomial, which is a sum (a series) of power functions, can be 

expressed as a product of linear models (factors)?  

 

Looking at a polynomial as a product of linear models (factors), helps us understand what a 

polynomial is. At the same time, perhaps even more importantly, it helps us understand 

what a polynomial is not. If you cannot express any model as a product of linear models, it’s 

not a polynomial. Let’s look at a few examples. 

 

Take a model as straightforward as  f (x) = 1/x. It cannot be expressed as a product of linear 

models. Therefore, we cannot model such a function with a polynomial. Similarly, you 

cannot model  f (x) = √x or any other fractional or negative powers of x, as a product of 

linear models. You cannot express any ratio of polynomials as a product of linear models — 

e.g.,  f (x) = (x−1)/(x+1). You cannot model  f (x)=2x as a product of linear models. Thus, 

none of these are polynomial functions. 

 

The above examples show that polynomials are not the only game in town. In fact, they 

can’t be because they have a big limitation. A polynomial can represent only products of 

linear models. Therefore, we need other models to capture relationships that polynomials 

cannot model. In the following sections, you will meet such models that cannot be 

expressed as a product of linear models. 

A polynomial of degree n has n roots (real/complex) 

The root of each linear factor is also a root of the polynomial  

If  f (x) is a polynomial of degree n,  f (x)=0 has n solutions (real/complex)  
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4.3 Exponential Family 

 
Lose weight in just 30 days! No pills! No dieting!! You can eat anything you want, even a 

whole pizza every day! Why spend 3 months dieting when you can get the results you want 

in just 1 month! Results guaranteed, or your money back! All this is for one easy payment of 

$19.95. Are you ready for the challenge? Have your credit card ready and call the number 

on your screen! 

Okay, I hear that you are ready pay? Great!  You just made a great investment in your own 

health. Ready to hear the details of the plan? Here it is. You just have to do pushups for just 

30 days. That’s it. Didn’t I say results are guaranteed?  

Here is the exact plan. The first day, you have to do only 2 pushups. Can you believe how 

easy this is? The second day, you just have to double that. Just 4 pushups! Easy as that! 

Every day, you double the number of pushups you did the previous day. If you continue 

doing this for just one month, you are guaranteed to lose weight, or your money back. 

Period. 

Now that you paid $19.95, let’s figure out what your schedule is going to look like: 

On the 1st day, you start with 2 pushups.  

On the 2nd day, you multiply 2 by 2. i.e.,  2×2 = 4 

On the 3rd day, you multiply 4 by 2. i.e.,  2×2×2 = 8  

On the 4th day, you multiply 8 by 2. i.e.,  2×2×2×2 = 16  
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So, far so good. I think you get the pattern now. Mathematically, this is raising the number 2 

to some power, where the power is the number of the day since start.  So, the number of 

pushups you have to do on any day is given by: 

 calculatePushups ( day ) = 2day 

where calculatePushups is the function that takes the day as its input and outputs the 

number of pushups you have to do on that day. If you like more succinct notation, we can 

write the same function as: 

  f (x) = 2x,  where x is the day. 

This is when you realize the problem with the plan. On the 10th day, you have to 210 

pushups — or 1024 pushups. Let’s say that somehow you do that, but on the 20th day you 

would have to d 220 pushups. Whoa! That’s more than 1 million. When you get to the final 

day, you would have to do 230, or more than 1 billion, pushups!  

If you continue with this plan, not only are you guaranteed to lose weight, but you are also 

guaranteed to lose your limbs! Time to call a lawyer.  

How did you end up like this given that you just started with 2 pushups 

on day 1? It’s all thanks to the model we used: the exponential model 

(function). In an exponential model, at each step, the output is calculated 

by multiplying the output of the previous step by some constant amount. 

In the above example, the constant amount is 2. This value is called the 

base. At each step, we multiply the output of the previous step by the 

base, which is 2 in the above example. This is illustrated below. You may 

also recognize this repeated multiplication as exponentiation, as we saw 

in Section 3.4. 

 

In concise terms, this exponential model can be represented as  f (x) = b 
x, where b is the 

constant base. Notice that this is very different from  f (x) = x2,  f (x) = x3, etc., which are just 

power functions. In a power function, a variable “input” is raised to a constant power like 2, 



95 
 

3, etc. That is, the “input” is multiplied a given number of times by itself.  In an exponential 

model, a constant number (a base) is raised to a variable power, which is given by the 

input. Because of this, at each step, the output of the previous step (output of the previous 

input value) is multiplied by a constant. In our pushup example, the output doubled every 

day. Since the output kept doubling, the function grew rapidly (i.e., exponentially). Because 

of this, in everyday language, people tend to refer to any rapid growth as exponential 

growth. That is not always correct. In math, exponential growth has a precise definition: it’s 

a function where the output of the previous step is multiplied by a constant multiplier to 

get the output of the current step. This produces rapid growth as shown by the graph 

of  f (x) = 2x, shown below.  

 

Here is another way to look at this rapid growth in output. The exponential model greatly 

amplifies the difference in input. For instance, if we have g (x) = x2, the ratio between g(10) 

and g(5) is 100/25 = 4. Now, if you look at the same ratio for the same input interval 

with  f (x) = 2x, we get  f (10) / f (5) = 1024/32, or 32. In addition, a difference of mere 5 in 

input became a difference of 1024 – 32 = 992 for output.  

Although they have very different growth rates, x2 and 2x have one thing in common: both 

x2 and 2x are constructed using the exponentiation operation. Hence, they are related to the 

general two-input power function (exponentiation operator) we saw in Section 3.4. For 

instance, x2 = power(x, 2), and 2x = power(2, x). Notice what is constant and what is 

variable in each model.   

Computer code for calculatePushups is given below to calculate the number of pushups 

needed for a given day. This code has two new features. First, it uses an if-else statement. It 
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is pretty straightforward. It says that “if day is equal to 1”, then the “result is 2”;  “else, the 

result is …”.  Note that we use the equality operator, ==, to test for equality. 

 

 
The 2nd new feature is found in the statement 

 result = 2 ∗ calculatePushups( day – 1 ) 

 

This means that the number of pushups for ‘day’ is 2 times the number of pushups on the 

previous day, which is “day−1”. That is, the number of pushups for day 4 is two times the 

number of pushups needed on day 3. Note that the above expression, calculatePushups 

(day – 1) is a function evaluation (function call); make sure that you do not confuse that 

with the function definition at the top of the code. 

In case you are interested, when a function calls itself (as shown above), it is called 

recursion. Here, we calculate the output for the current step using the output of the 

previous step. This recursive process goes on until the input (day) is 1. Then, the ‘if’ 

statement becomes true and the function returns 2, thereby terminating the recursive 

process.  Many mathematical definitions show this relationship and hence naturally lead to 

recursion. If you are a programmer, you should know how to convert this to an iterative 

statement (a for loop), but I will not do it here, because recursion is a fundamental 

programing structure we need to understand to express mathematical relationships. 

Exponential models have many real-world uses. One very common use is calculating 

compound interest (on your savings, or on a loan). Say you deposit $100 in the bank today. 

The bank is going to pay you 2% interest on the balance each year. What will be your 

balance after 10 years? Let’s work it out for a few years first:  

After 1 year, the balance is $100 ∗ 1.02  = $102.00     (1) 

After 2 years, the balance is $102 ∗ 1.02  = $104.04   (2) 

function calculatePushups( day )  
{ 
 if (day == 1) 

  result = 2  

 else  

  result = 2 * calculatePushups( day - 1 )  

 return result 
} 

pushups = calculatePushups( 20 ) 

print( pushups ) 
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This is crucial to understand. The bank pays interest on the entire balance, which includes 

your principal $100 you deposited initially, and the interest you earned the previous year 

(i.e., the total output of the previous step). So, (2) can be written as: 

 100 ∗ 1.02 ∗ 1.02 

After 3 years, the balance is:  

100 ∗ 1.02 ∗ 1.02 ∗ 1.02 

Now, you can see a pattern emerging. Every year, we multiply the previous year’s balance 

(output) by 1.02. This is very similar to the pushup example, where we multiplied the 

previous day’s pushups by 2. After n years, the balance will be: 

 $100 ∗ (1.02)n 

We can model this as follows, where 100 is the principal (initial deposit): 

 Balance (n) = 100 ∗ 1.02n 

When n=10, we get the balance after 10 years, which is equal to 100*(1.02)10 = $121.90. 

Since we multiply the previous balance (output) by a constant (1.02) each year, this is 

exponential growth. Computer code for calculating the balance after a certain number of 

years is given below. For instance, to calculate the balance for the above situation, we can 

call calculateBalance( 100, 0.02, 10 ). 

 

 

  

 

function calculateBalance( principal, rate, year )  
{ 
 if (year == 0) 

  balance = principal  

 else  

  balance = (1.0 + rate) * calculateBalance( year - 1 )  

 return balance 
} 

balance = calculateBalance( 100, 0.02, 10 )  

print( balance ) 
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4.3.1 THE (NATURAL) EXPONENTIAL FUNCTION 

In our pushup example,  f (x) = 2x, we had an exponential function with base 2. In the bank-

balance example where  f (x)=100∗(1.02)x, the base was 1.02. An exponential function can 

have any base. However, is there a base that is more useful than any other? There is and it’s 

the irrational number 2.7182…, which is represented by the letter e, just as 3.14159… is 

represented by the letter π. Why is e more useful than other bases? To understand this, we 

have to look at the slope or the rate of growth of an exponential function.  

The rate of growth (slope) of an exponential model depends on the value of the base and 

the input value (x). As an example, the middle row of the following table shows the output 

value of three exponential functions at x=4: 2x, e 
x, and 3x — that is, 24, e4, and 34. The last 

row shows the slope of the same functions at x=4.  As you can see, the slop of e 
x at x=4 is the 

same as output value at x=4 (i.e., e 
4). For e 

x, this is true for all other values of x (not just 

x=4). You can see this relationship does not hold for bases 2 ( 2x ) or 3 ( 3x ). For base 2, the 

slope is always smaller than the output value, as shown in the graph below. For base 3, the 

slope is always greater than the output value. That suggests that there is a base between 2 

and 3, where the slope is always equal to the output value. That base is e, where e is 

2.7182…  

 
2x e x 3x 

output at x=4 16.00 54.60 81.00 

slope at x=4 11.09 54.60 88.99 

 
What’s the significance of the above property? To fully answer that, we need calculus (a 

mathematician would say, e 
x is the eigenfunction of the derivative operator, which, to most 

people, sounds like “blah blah blah”). For our purposes, it just means that if we ever want to 

find the slope of e 
x at any point, we don’t have to sweat at all — we can just use the output 

value of e 
x at that point. This makes e 

x special. Therefore, we call it the natural 

exponential function. 
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Although e 
x has special properties, for the purpose of understanding, it models a similar 

function to our pushup routine. In our pushup routine, each day, we did 2 times the 

pushups we did the previous day. If we use e 
x instead, we would be doing 2.7182 times the 

pushups we did the previous day. That’s it. Instead of doubling, we multiply by a little over 

2.7. So, intuitively, just look at e 
x as a slightly modified pushup routine (I will leave it up to 

your imagination to figure out how to do a fractional pushup). Can you modify the 

computer code of the calculatePushups function, so that each day we would do 2.7182 

times the pushups we did on the previous day?  

4.4 The Inverse Functions of The Families We Met 

Recall that, so far, we have met 3 function families: (1) Power functions, (2) Polynomial 

functions, and (3) Exponential functions. In this section, we are going to look at their 

inverse functions, if they exist.  

Again, recall that a function and its inverse can undo each other’s effect. If we feed the 

output of a function into its inverse, we get the original input back (as the output of the 

inverse function). In other words, a function helps us get the output value y for a given 

input value x. However, if we know the output value, y, to get back to the original input, x, 

we can use the inverse function.  

Remember, in Section 2.2, we saw that if you know the inverse function of  f (x), you know 

the solution to an equation of the form  f (x) = b. That is one of the reasons why we are so 

interested in inverse functions — they help us solve equations.  
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Therefore, it is always useful to look at a function and its inverse together. For instance, if 

you can turn your head left, you’d better know how to turn it right as well, if you ever want 

to face straight again.  

 

 

4.4.1 INVERSE OF POWER FUNCTIONS 

Recall that a function of the form  f (x) = x 
n is a power function, where n is a positive integer 

constant. For instance,  f (x) = x2 and  f (x) = x3 are power functions. We saw how these types 

of power functions are used in building a polynomial.  

In general, if  f (x) = x 
n, the inverse function f -1(x) is given by 

the nth root of x, as shown by the Visual Model. 

f -1(x)  = x1/n   [ nth root of x ] 

 = √𝑥
𝑛

   [ nth root of x ] 

There is one important caveat. We learned that if a function 

produces the same output value for different inputs, that 

function does not have an inverse, unless we restrict the 

domain of that function’s input values. For instance, when n is 

even, the power functions produce the same output for 

different inputs. Therefore, we need to restrict the input domain. With that in mind, let’s 

look at the inverse of different power functions we encountered.  

Let’s start with n=1. If  f (x) = x, its inverse is itself, because  f (x) = x is the identity function, 

where input and output are the same. Therefore, f -1(x) = x. 
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When n=2, we have  f (x) = x2. Its inverse, f -1(x) = x1/2 = √x. This is the square root function. 

The graph of f -1(x) = √x is given below. Notice that  f -1(x)= √x is parabolic, just as  f (x) = x2 

and  f -1 is defined for only positive values of x.  

 

Graphically, an inverse function is a reflection of the original function around y = x line (i.e., 

identity function). Can you imagine why? Recall the definition of inverse. If function f 

produces output y for input x, then the inverse function should accept y as input and 

produce x as output. For instance, if function f produces 4 as output for an input of 2 

(orange dot), the inverse function should produce 2 as the output for an input of 4 (blue 

dot). Notice that the perpendicular distance from point (4, 2) to the line y = x is the same as 

the distance from the point (2, 4) to the line y = x. This symmetry is present between any 

function and its inverse, provided that the inverse exists. 

Notice that  f (x) = x2 produces the same output for two input values. For instance, when 

x=2 or x=-2, the output is 4. However, the inverse function, f -1(x) = √x gives only the 

positive value. We can represent the negative value using the inverse function f -1(x) = ⎻ √x. 

We can combine both functions and write: 

 f -1(x) = ± √x        (1) 

It is important to notice that (1) represents two functions at once:  

f -1(x) = + √x  and  f -1(x) = ⎻ √x 
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Therefore, you can think of (1) as a mathematical relation capturing two functions. A 

mathematical relation, unlike a function, can have multiple outputs for the same input. To 

summarize, to find the inverse of  f (x) = x2 for all the real values of x, we need two inverse 

functions. 

The other functions of the power family and their inverse functions behave the same way.  

When n=3, we have  f (x) = x3. Its inverse, f -1(x) = x 1/3, is the cube root . The graph 

of  f (x) = x3 rises faster than that of  f (x) = x2. Therefore, their inverse functions have the 

opposite relationship:  x1/3 rises slower than x1/2. Since  f (x) = x3 produces a unique output 

for each input, its inverse exists for all values of x. For instance, the cube-root of 8 is 2, and 

cube-root of -8 is -2.  

Do you know why √2 is called the square root of 2? What does this have to do with any root 

(zero) of a function? Well, say we write  f (x) = x2. Let’s represent the output value of   f (x) 

with b. Then, we have x2 = b. To solve this equation, we have to find the roots (zeros) of 

function  f (x) = x2 − b. Recall that roots are the solutions to the equation  f (x) = 0.  Since  f (x) 

is a 2nd degree polynomial function, it has two roots: one at +√b and the other at -√b. 

Therefore, √b and -√b are the roots (zeros) of the function  f (x) = x2 − b. Similarly, a 

cube-root is a root of the function  f (x) = x3 − b.    

As a real-world example of a square root, let’s look at the relationship between current, 

resistance and power as we did before. We know that 

 Power = (Current)2 ∗ Resistance 

Therefore, if we want to find Current, given Power consumption and Resistance, we can 

express Current as: 

 Current = (Power/Resistance) ½  

Thus, Current is given by the square root of the ratio between Power and Resistance.  

Since area has a quadratic relationship to length, square-roots naturally occur in problems 

where we know the area of an object and we want to find the lengths of its sides. Similarly, 

since volume has a cubic relationship to length, cube-roots occur naturally in problems 

where we know the volume of an object and want to find the lengths of its sides.  

4.4.2 INVERSE OF POLYNOMIALS 

In this section, we are going to explore the inverse of polynomial functions. We start with 

the simplest polynomial model: the linear model.  
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4.4.2.1 Inverse of the Linear Model 

Our Visual Model shows the inverse function, f -1, of the linear model 

f (x) = m x, where m is a constant and x is the input. As you can see, f -1 is 

also linear. The only difference is in the coefficient of multiplication (or 

slope of the line). That is, if  f (x) = m x, then f -1(x) = (1/m) x, or  

f -1(x) = x / m. 

 

If we have the general linear function y = m x + b, to 

find its inverse, we just solve for x as: 

 
            x = (y − b)/m 

 
The right-hand side of the equation is a function of y, so we can write: 

 
    f -1(y)  = (y – b)/m 

 

If we use x as the traditional input variable, we get:  

 

  f -1(x)  = (x – b)/m     (1)   
or 

      f -1(x)  = x/m – b/m     (2) 

Note that (2) is also a linear function, with a slope of 1/m and an offset of –b/m. This is an 

important observation. We don’t need a different type of function to reverse the effects 

(undo) a linear model. This is not the case with most of the functions we will meet in this 

section.  

 

 
As we saw before, the inverse of a function provides the general solution to the 

equation  f (x) = b. For instance, if  f (x) = 5x + 3, its inverse, f -1(x), is given by (x − 3)/5.  So, if 

we have the equation  f (x) = 10, the solution would be given by  

f -1(10) = (10 – 3)/5 

 = 7/5 

To verify the answer, we can input 7/5 to function f, giving us f (7/5) = 7*5/5 + 3 = 10. 

A linear model can undo (invert) another linear model 
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4.4.2.2 Inverse of Polynomials 

Most polynomial functions don’t have inverse functions, because they produce the same 

output for multiple inputs. However, we can find the inverse functions for some 

polynomials when we can restrict the domain of input values so that the function does not 

produce the same output more than once within the given domain.  

To find the inverse function of  f (x), we use a variable, say y, to represent its output and 

then solve for x (because x is the output of the inverse function). For instance, assume we 

have: 

      f (x)  = x2 − x − 2 

From here, let’s use variable y to represent the output of  f (x) and solve for x.  

 y = x2 – x – 2 

or 

 0 = x2 – x – 2 – y       (A) 

Notice that (A) is a quadratic equation of x. How do you solve for x in an equation like this? 

The easiest way is to use the quadratic formula: 

 𝑥 =  
−𝑏 ± √𝑏2−4𝑎𝑐

2𝑎
 

Using the quadratic formula, we can find the solutions to equation (A). Notice that, from 

equation (A), we get a = 1, b = –1, and c = (–2 – y). If we plug these into the quadratic 

formula, we get: 

𝑥 =  
1 ±  √12 − 4.1. (−2 − 𝑦)

2
 

 x = ½ ± ½ √(1 + 8 + 4y) 

 x = ½ ± ½ √(9 + 4y)     

As expected, we get two roots. Thus, we can write two inverse functions: 

 f -1(y) = ½ + ½ √(9 + 4y)       (1) 

or 

 f-1(y) = ½ – ½ √(9 + 4y)       (2) 

Notice that function name f is underlined in equation (2) to distinguish it from equation (1). 

Also, notice that we expressed f -1 as a function of input variable y but we could have used 

any input variable name.  
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Say we wanted to find the input value that makes an output of 4. To do that have to find 

f -1(4) and f 
-1(4). Plugging 4 into equations (1) and (2) gives us: 

 f -1(4) = 3  and    f -1(4) = −2 

If we check our answers using the original function, we see that f (3) = 9 – 3 – 2 = 4 

and  f (-2) = 4 + 2 – 2 = 4. 

Notice that both equations (1) and (2) have real coefficients if and only if (9 + 4y) ≥ 0. This 

arises from the fact that the output of  f (x) is always greater than – 9/4.  Therefore, we see 

that inverse functions with real coefficients are defined for a limited number of y values. 

You can approach finding the inverse of any quadratic function the same way as we saw 

above. For higher degree polynomials, the inverse may not exist or could be hard to find. 

Therefore, as we discussed in Section 2.3.2, when we need to solve polynomial models of 

higher degree, we need to resort to other methods to find roots.  

4.4.3 INVERSE OF EXPONENTIAL FUNCTIONS: LOGARITHMIC MODEL 

With an exponential model, we saw that the output grows 

really fast when we increase the input. The logarithmic 

model is the inverse of the exponential model. As a result, its 

output grows really slowly, when we increase the input. If 

you understood the inverse operation, this should not come 

as any surprise. The logarithmic model has to “undo” all the 

“expansion” that the exponential model did, to get back to 

the original input. Thus, you can think of the logarithmic operation as performing 

“compression” of input.  

The Visual Model shows how the logarithmic function (of base 2) can 

undo the exponential function 2x. As an example, for an input domain 

of 5 to 10, the exponential function 2x produces outputs in the range 

of 32 to 1024. In contrast, for inputs between 32 to 1024, the output 

of log2(x) is between just 5 and 10. Thus, logarithmic functions can 

“compress” a wide input domain to a very small output range.  

Let’s look at a concrete example. Our calculatePushups function gave 

the number of pushups you need to do for a given day. In contrast, the 

logarithmic model would give us the number of days it takes to get to 

a given number of pushups. Such a logarithmic model can be defined 

as: 
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 calculateDay( pushups ) = log2( pushups ) 

The above will output the day at which we do a given number of pushups, if we were 

doubling the number of pushups each day. More concisely, we can represent it as: 

  f (x) = log2(x),   where x is the number of pushups.  

For instance, if we use 1024 as the input to the above logarithmic 

function, the output will be 10, which means that on the 10th day, 

you will have to do 1024 pushups, if we started with 2 pushups 

on day 1 and kept on doubling.  

The Visual Model of our pushup routine should further clarify 

why the logarithmic and exponential models are inverse of each 

other. If we input a “day” to the exponential model, after sending 

its output through the logarithmic model, we get the same “day” 

back. As an example, if we did pushups for 10 days, on the 10th 

day, we will do 1024 pushups.  Now, if we use 1024 as our input 

to the above logarithmic function, calculateDay, the output will 

be 10, getting us back to where we started. 

Note that, in our figure, both the exponent and the logarithm are of 

base 2. However, the inverse relationship applies for any base. As an 

example, the Visual Model shows the same inverse relationship with 

base e. We call a logarithm with base e as “ln” or natural logarithm.  

 
 
You may have seen graphs with log axes — i.e., one or both axes are logarithmic. Do you 

know why we need them? It is tied to the “compression” property of the log function. As a 

practical example, let’s take cell division.  Cells replicate by repeated division.   
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At timestep 0, we start with 1 cell [ “mother” of all cells ]  

At timestep 1, we have 1∗2 = 2 cells [ 1 cell divided into 2 ] 

At timestep 2, we have 2∗2 = 4 cells [ both cells divided into two, producing 4 ] 

At timestep 3, we have 4∗2 = 8 cells  [ 4 cells divided into two, producing 8 ]  

Now, you know the drill. We have seen this many a time. This is describing an exponential 

function with a base of 2.  At each step, each cell creates an output (another cell). You can 

visualize this as all cells at a given step doubling for the next step. That is, the output of 

each step is double that of the previous step. That’s the salient feature of an exponential 

model.    

We can represent the number of cells as a function of timestep: 

 numberOfCells (timestep) = 2 timestep 

Or more succinctly, using single letters as variable names: 

 f (t) = 2t 

where t is the timestep. Remember, t starts at 0. If we plot the timestep, t, on the horizontal 

axis and the number of cells, f (t), on the vertical axis, we get a graph similar to the one 

shown below on the left. Since cell-division is an exponential model, f (t) grows rapidly. If 

we want to show 30 steps, on paper, we may have to buy our own paper mill!  

How do you show an exponential relationship like this for a large input domain? Easy. 

Instead of plotting f (t) on the vertical axis, we plot the log of f (t)  — i.e., log10( f (t) ). That is, 

we send the output of f (t) through a log function (with a base of 10) and plot that result. If 

we do that, the resulting line log(2t) is shown on the left graph below (note that when we 

omit the base, it is assumed to be 10). This clearly shows the “compression” property of the 

logarithmic model, which compresses an exponential range to a linear range. By the way, 

did you notice that log( f (t) ) is function composition? 

The graph of f (t) is shown on the right as well, but with the vertical axis labeled differently. 

There, the vertical axis is usually called a “log axis”. For this graph, as well for the previous 

one, we send f (t) through a log function to get log( f (t) ) and plot the resulting value. 

However, to read out the values of f (t) directly, the vertical axis is labeled with the original 

output of f (t), instead of log( f (t) ). For instance, when the log( f (t) ) is 2 (left graph), f (t) is 

100 (right graph). Either way, the relationship between log( f (t) ) and t is linear, because 

the relationship between f (t) and t is exponential.  You will frequently see graphs with log 

axes in practice, because exponential relationships are common in the real world.  
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A practical use of a logarithmic scale is the Richter scale used to express the magnitude of 

an earthquake. Can you guess why? It’s because, the magnitude of an earthquake can vary 

from small to very large. Some earthquakes are minor tremors you can hardly feel, whereas 

others flatten buildings and cause tsunamis. What’s the best way to express such a wide 

range? Send it through a log function (in this case, with a base of 10), and use that output. 

Therefore, if the Richter scale identifies a magnitude 7 earthquake and a magnitude 8 

earthquake, the latter is 10 times more powerful than the former. Similarly, decibels, 

denoted by dB, is another such metric used to express the logarithm of a ratio, instead of 

the plain ratio, because the range of the ratio can be really large.  

We know that inverse functions are used to solve equations of the form  f (x) = b, where b is 

a constant. We know that, ln(x) and e 
x are inverse functions of each other. If we 

have  f (x) = e 
2x, and the equation  f (x) = 5, we would get 

        e 
2x  = 5 

This is an exponential model. Therefore, we can apply the inverse function of e 
x, to both 

sides of the equation: 

 
 ln(e2x) = ln(5)     [ take log of both sides ] 

        2x  = ln(5)     [ ln(5) is a constant ] 

          x  = ln(5) / 2 

Similarly, if we have  f (x) = ln(5x), and we have to solve the equation  f (x) = 2, we could 

write: 

 ln(5x) = 2 



109 
 

Applying the inverse function of ln(x) to both sides of the equation produces the following. 

Notice that you can think of e 
x as exp(x) to visualize the application of the exponential 

function.   

 e ln(5x)  = e2    [ exp( ln(5x) )  = exp( 2 ) ] 

        5x  = e2    [ e 
2 is a constant ] 

          x  = e2 / 5 

The value of inverse functions in solving equations of the form  f (x) = b should be clear to 

you by now. 

4.5 Reciprocal Functions of the Families We Met 

In the real-world, we often find relationships between input and output where the output 

decreases proportionately when the input is increased. Similarly, when we decrease the 

input, the output increases proportionately. We call this type of a relationship a reciprocal 

relationship. In this section, we are going to explore the reciprocal relationships of the 3 

function families we have met so far. 

Before we begin, there is a huge pitfall in naming you should 

be aware of. If we increase the input of a function and the 

output decreases proportionately, we also say that the 

output is inversely proportional to the input. However, an 

output being “inversely proportional” to an input is not the 

same as an “inverse function”. They are very different 

concepts. The two Visual Models should make the difference 

clear as night and day. The appearance of word “inverse” in 

“inversely proportional” is quite unfortunate. Whenever, 

you should see 1/function, the word that should 

immediately come to your mind is “reciprocal”.  

 

Here's a good way to remember the relationship between a function and its reciprocal: if 

you multiply any function by its reciprocal, you should get 1 as the output: 

  f (x) ∗ 1/ f (x) = 1 

This also means that, if the reciprocal of g (x) is  f (x), then the reciprocal of f (x) is g (x), 

because f (x) . g (x) = 1. Therefore,  f (x) and g (x) are reciprocals of each other.  

f 
-1  ≠  1 / f, in general 
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Notice that the same relationship is not true in general for an inverse of a function, f -1. In 

general: 

  f (x) ∗ f -1(x)  ≠ 1 

4.5.1 RECIPROCAL OF POWER FUNCTIONS  

4.5.1.1 Reciprocal of The Linear Term 

The simplest power function we studied was  f (x) = x, which has one linear term. The 

reciprocal of this, g (x), is: 

     g (x)  = 1 /  f (x)  

= 1 / x 

Therefore, the simplest reciprocal model is g (x) = 1/x. We can verify this by using: 

g (x) ∗  f (x) = 1,        (1) 

which means that the function multiplied by its reciprocal is always 1. Note that 1/x,  is also 

known as the multiplicative inverse of x. This is another name used for the reciprocal. 

Again, it has nothing to do with inverse functions. 

Here is another pitfall to be careful of: 1/x can be also written as x -1, where x is raised to 

the power of negative 1. Never confuse this with f -1(x), which is inverse of f (think of 

f -1 = f inverse). To avoid the overloaded use of word “inverse”, we will continue to refer to 1/x 

as the reciprocal of x. In Section 4.4.1, we saw that the inverse of  f (x) = x is  f (x) itself, not 

g (x) = 1/x. This shows that the inverse of a function is very different from its reciprocal. 

The more general form of (1) can be written as: 

  f (x) ∗ g (x)  = k       (2) 

where k is a constant. When k=1, we get (1).  If  f (x) is increased by some factor, then g (x) 

has to be decreased by the same factor to produce constant k as the output.    

Why is the reciprocal model so important in practice? Well, as we will see soon, inverse 

proportionality is very common in the real world. For instance, take Ohm’s Law,  

 Voltage = Current ∗ Resistance     (3) 

If Voltage is constant, (3) becomes 

 Current ∗ Resistance = k 



111 
 

This is a reciprocal relationship similar to (2). Another way to see this is to reorganize (3) 

as follows: 

 Current = Voltage / Resistance     (4) 

Equation (4) means that Current is directly proportional to Voltage but inversely 

proportional to Resistance. That is, if Resistance is increased by a factor of 10, Current is 

reduced by a factor of 10. This is a typical reciprocal relationship. 

Let’s take another physical law: the Ideal Gas Law we have met before. It says: 

 Pressure ∗ Volume  = k ∗ Temperature 

where k is a constant.  

If Temperature is constant, we get a typical reciprocal relationship: 

 Pressure ∗ Volume = k      (5) 

or 

 Pressure = k / Volume      (6) 

For instance, if we double Volume, Pressure will be halved. Equation (5) is known as 

Boyle’s Law, which is a special case of the Ideal Gas Law.   

The graphs of  f (x) = x and its reciprocal model g (x) = 1/x are given below. Notice how the 

orange curve for g (x) goes to positive infinity as x approaches zero from the positive 

direction. This is because when we divide 1 by a very small positive value, we get a very 

large positive value. However, g (x) goes to negative infinity as x approaches zero from the 

negative direction, because we are now dividing 1 by a very small negative value.  

The following graph represents (6) when k=1. If x is Volume, then g (x) represents Pressure. 

As expected, when Volume is increased, Pressure drops, and when Volume approaches 

zero, Pressure increases rapidly, approaching infinity.  

Similarly, the following graph can represent (4), when Voltage is 1. If x represents 

Resistance, g (x) represents Current. As Resistance increases, Current approaches zero. 

When Resistance decreases, Current increases, approaching infinity when Resistance 

approaches 0.   
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So far, we have looked at the function  f (x) = x, which is also known as the identify function, 

because it simply outputs the input it receives. Let’s look at the reciprocal functions of 

more general linear models. 

If  f (x) = m x, then its reciprocal is 1/ m x 

If  f (x) = m x + b, then its reciprocal is  1/( m x + b)  

The reciprocal of a linear model is a not a linear model.  

 

 

4.5.1.2 Inverse Square Model 

In the previous section, we looked at the reciprocal of a linear term. Similarly, we can have 

the reciprocal of a quadratic term. For instance, if  f (x) = x2, then its reciprocal model is g (x) 

= 1/x2. 

The reciprocal function g (x) = 1/x2 is known, rather unfortunately, as the “inverse square” 

function.  As noted at the beginning of this chapter, this has nothing to do with inverse 

functions. It’s a reciprocal relationship.  

The reciprocal of a linear function is not linear 
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In the previous section, we looked at reciprocal models where the 

output is “inversely proportional” to the input. When output is 

inversely proportional to the square of the input, we get an inverse 

square model. That is, if we double the input, the output becomes a 

quarter of what it used to be.  

The most famous relationship that shows inverse square behavior 

is Newton’s Gravitational Law:  

Force = G ∗ mass1 ∗ mass2 / distance2 

This law says that the gravitational force between two objects is proportional to the 

product of their masses and inversely proportional to the square of the distance between 

them. G is a constant. Force is a function of three input variables, as shown in the computer 

code below. If we fix the masses of the objects (i.e., for two given objects of constant mass), 

the Force is inversely proportional to the square of the distance between them. What does 

that mean? If we double the distance, the gravitational force between the objects becomes a 

quarter of what it used to be.  

 

 
Another famous physical law that follows the inverse square model is Coulomb’s Law:  

F = k ∗ q1∗ q2 /d 2 

where q1 and q2 are two electrical charges, k is a constant, and d is the distance between 

them. 

The graph of  f (x) = x2 and its reciprocal model g (x) = 1/x2 are shown below. If we compare 

this to the gravitational model with fixed masses of 1 unit, x represents the distance 

between the two objects and g (x) represents the gravitational force between them. As you 

can see, as the distance between the two objects starts increasing, the gravitational force 

between them decreases rapidly. This is the reason why the gravitational force becomes so 

weak with increasing distance.  

function gravitationalForce( mass1, mass2, distance )  
{ 
 G = 6.67408e-11 

force = G * mass1 * mass2 / (distance * distance) 

return force 
} 
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Again, recall that the inverse of  f (x) = x2 is f -1(x) = √x, which is very different from the 

reciprocal of  f (x), which is 1/x2.  

4.5.2 RECIPROCALS OF POLYNOMIALS 

Just as we can find the reciprocal of a general linear model, we can find the reciprocal of 

quadratic, cubic, and other polynomial functions. For instance, if  f (x) = x2 − 1, we can write 

its reciprocal, g (x), as: 

 
 g (x)  = 1 / (x2 – 1) 

Since we can factorize  f (x) as  f (x) = (x − 1)(x + 1), we can also write the above as: 

 g (x) = 1 / (x − 1)(x + 1) 

 

The graph of g (x) is given below. As you can see from its graph, when g (x) approaches 1 or 

-1 (i.e., the roots of f (x)), the output becomes infinite. The number of such inputs is given by 

the number of linear factors, or the number of roots, of the polynomial  f (x). From the 

fundamental theorem of algebra, we know that an nth degree polynomial should have n 

linear factors or n roots, including repeated roots and complex roots. You will encounter 

these types of reciprocal models in areas like control systems.   
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4.5.3 RECIPROCAL OF EXPONENTIAL MODELS (EXPONENTIAL DECAY) 

The reciprocal of exponential functions is quite common. For instance, the reciprocal of 2x 

is 2-x (or, 1/2x) because the product of the two functions produces 1. As an example, the 

graph of e-x is given below, with ex shown for reference. As you can see, at any given value 

of x, the product of ex and e 
-x is 1, and hence, both lines cross at (0, 1). That is: 

 e 
x ∗ e 

-x = 1 

The above property makes the functions e 
-x 

and e 
x reciprocals of each other. When x is 

positive, e 
x is called an exponential growth 

model and its reciprocal, e 
-x, is called an 

exponential decay model. Notice that e 
-x is 

not the inverse of e 
x. The inverse of e 

x is the 

natural logarithm, ln(x). 

As an example, let’s say we had a pushup 

routine where we do only half the number 

of pushups we did the previous day. This is 

an exponential decay model. If you start 

with 1024 pushups, the next day you have to do only 512. By the 10th day, you are down to 

only 2 pushups: an ideal formula to gain weight! 

If you consider the above to be a facetious example, a really important phenomenon also 

follows the same pattern: radioactive decay. If you have a lump of radioactive material, it 

emits radioactive particles. After a given number of years (say, 1 year), its radioactivity will 
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be only half of what it used to be. After another year, it will be half of that (i.e., a quarter of 

the original amount). The time period, 1 year in this case, is called “half-life” — the time it 

takes the radioactivity to reach half of its original amount. The “half-life” of our decaying-

pushup example was just one day. For radioactive materials, it could be thousands of years.  

This is the fundamental principle behind “carbon dating”. No, it’s not another online dating 

site; it’s a method for determining the age of a material. We can easily explain carbon 

dating with our decaying-pushup example.  

Let’s say you and your sister start doing pushups — starting with 1024 the first day! 

However, you halve the number of pushups you do each day, while your sister does not. 

Let’s say that on the Nth day, your sister is doing 8 times the number of pushups you're 

doing on the same day. Which day is this? Or, in other words, what is the value of N? Let’s 

see. 1024 divided by 8 is 128. So, your sister did 1024 pushups as always while you did 

only 128. How many days did it take you to get to 128 pushups from 1024? Let’s start at 

1024 and keep on dividing by 2: 1024, 512, 256, 128. That is, on the 4th day, you are doing 

128 pushups. In other words, after 3 days, your sister was doing 8 times the number of 

pushups as you did. 

Now, let’s say that there are two elements that behave just like you and your sister. One 

element does not decay (your sister) while the other decays exponentially (as you did). We 

know the half-life of the decaying element (just like the half-life of pushup routine was just 

1 day). Now say, we measure the ratio of radioactivity between these two elements in a 

sample and find out that the ratio is 8, just as in our pushup example. What does this mean? 

We know exactly it has taken three half-lives to get to a ratio of 8. If the half-life was 1000 

years, we know that it has been 3000 years since these two elements were equal. That’s the 

basis of carbon dating. One form of Carbon, Carbon-14 decays (just as you did) while the 

other form of Carbon, Carbon-12, stays the same. Therefore, by determining the ratio of 

Carbon-14 to Carbon-12 in an organic sample, you can determine its age.  Our silly pushup 

example was not that silly, after all, was it?  
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This section concludes the reciprocal family. At this point, we have looked at 3 function 

families, their inverse families, and their reciprocal families. Now we are ready to study the 

4th function family.  

4.6 Trigonometric Family 

4.6.1 PERIODIC FUNCTIONS 

Imagine you are on a Ferris wheel like the one shown in the figure below. As the Ferris 

wheel rotates, what model describes your height at a given time?  

A Ferris wheel is different from models we have looked at so far in one very important way. 

It rotates repeatedly. That is, if you are at the highest (12 O’clock) position now, after some 

time, you will again reach the same position. This will happen over and over. The time 

taken to reach the same position is called a “period”, which is measured in seconds. As a 

result, functions modeling this sort of periodic activity are called “periodic functions”. The 

reciprocal of that period is called the “frequency”; that is, how “frequently” you get to the 

same (e.g., the highest) position (e.g., you reach the highest position twice every minute).  

 

Say we want to model your position on the Ferris wheel at a given time. We can do that if 

we know the “height” and distance (“dist”), as labeled on the figure above. To find those 

two values, we will develop two mathematical models. 

 

If we want to develop a model to find your height on the Ferris wheel, we can use the angle 

of rotation as the input to that model. To stick to the convention, we will start measuring 

this angle when you are at the 3’O clock position. When measuring angles, we consider the 

counter-clockwise direction to be positive. If we measure in the opposite (clockwise) 
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direction, that angle created is considered to be negative.  Both the starting position and 

the positive direction are just conventions. We could have chosen the 12’O clock position as 

the starting point and clockwise as the positive direction without any fundamental changes 

to our model (as we saw with negative numbers in Section 3.1.2). 

 

With the above conventions, when you are at 12 O’clock, the angle is 900 and when you are 

the 6 O’clock position, the angle is either 2700, or -900, because you could have reached the 

6 O’clock position two ways: going 2700 counter-clockwise, or 900 clockwise. As a result, 

we would expect the same output value (your height) from our model, no matter which of 

the two angles you use. The same is true for 00 and 3600. We will denote this angle by letter 

α. 

 

The output of our model is your height on the Ferris wheel. Again, to stick to conventions, 

we will measure the height from the hub of the wheel, instead from the ground, because the 

wheel is rotating around the hub. Again, this is just a convention. If we wanted to express 

the height from the ground, we could simply add a constant offset (height from ground to 

the hub) to the output. For simplicity, let’s say that the radius of the Ferris wheel is just 1 

unit (whatever that unit is). So, when you are at 12 O’clock, your height is 1 unit, and when 

you are at 6 O’clock, your height is -1 unit. When you are at 3 O’clock or 9 O’clock positions, 

your height is 0 (See figure above).  

 

The relationship between the input angle, α, and your height on 

the Ferris wheel is given by a model called the sine function. We 

can express this relationship as: 

 

 Your height on the Ferris wheel = sin(α) 

 

The following figure shows how your height changes as the 

Ferris wheel rotates. At the start, when you are at 3 O’clock, 

angle α is 0 and your height (from the hub) is also zero. As the wheel rotates counter-

clockwise, angle α increases and your height starts going up. When you arrive at 12 O’clock 

(900), you have reached the maximum height of 1 unit. When you get to 9 O’clock (1800), 

your height reaches zero again. This pattern repeats forever, similar to the way the Ferris 

wheel keeps on rotating. Study this graph carefully and compare the value of sin(α) to your 

height at each of the given angles (positions on the Ferris wheel). It is really important to 

understand this graph. 
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Why is this graph shaped like a wave? It is because the rise of your height is not uniform as 

you go around.  For instance, if you start at 3 O’clock and travel 450 counter-clockwise, your 

height has increased way past the mid-point (in fact, your height is 0.71 units). During the 

next 450, the gain in height is much smaller (0.29 units). This uneven rise in height leads to 

this wave-like graph.   

 

Now, let’s use a second model to model how far you are horizontally from the hub (i.e., your 

distance, “dist”, from the vertical axis of the Ferris wheel). We call this the cosine (or cos) 

function. 

 

 

The graph of cos(α) has the same shape as the graph of sin(α). The main 

difference is that at the start, when α is zero, cos(α) is 1, while sin(α) is 

0. Essentially, we have shifted the whole sine curve by a quarter of a 

cycle (900) to the left. Because of this, you can find cosine values by 

looking at the sine graph. To find cos(0) all you have to do is look at the 

output for the input value 900 on the sine graph. In general, if we want 

to find a cosine value at α degrees, we just have to read the value from 

the sine graph at input α + 900. We can express this relationship as: 
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 cos(α) = sin(α + 900) 

 

The above means that we can calculate the cosine value for any input angle just by using 

the sine function. We just have to add an offset of 900 to the input angle, as shown by the 

Visual Model. This offset is called the phase shift, because its effect is simply “shifting” the 

input.  

 

We can define many other functions using the sine and cosine functions. For instance, the 

ratio between the sine and cosine functions is the tangent (tan) function. The reciprocal of 

sine function is the cosecant function. The main takeaway is this: all of these functions arise 

from the sine function, which is your height on the Ferris wheel.  

 

As another note, we can measure an angle either in degrees or radians, just like we 

measure distance in either miles or kilometers. 3600 is 2π radians, which is equal to the 

circumference of a unit circle. Therefore, 1800 is π radians and 900 is π/2 radians. You will 

see both of these units in practice.   

 

In many real-world applications, it is more useful to have time as the input instead of angle 

α, because it is easier to measure time.  As we know, angle α increases proportionately as 

time goes by, and hence, α and t are linearly related. For instance, if the Ferris wheel 

rotates 1 rotation every second, the angle increases 3600, or 2π radians, every second. After 

2 seconds, the angle has increased to 2∗3600 or 2∗2π radians. Therefore, after t seconds, 

the angle α is given by 

 

 α = 2π t  [ angle in radians ] or   

α = 3600 ∗ t   [ angle in degrees ].  

 
Instead of rotating 1 rotation every second, if the Ferris wheel is 

rotating f rotations every second, the frequency is f cycles per 

second. In this case, angle α increases linearly with f. Why? 

Because faster the Ferris wheel rotates, the faster the angle 

changes. Hence, α is given by: 

 

 α = 2π f t  [ angle in radians ] or   

α = 3600 ∗ f t   [ angle in degrees ]  
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Therefore, for a given time, t, we can always find the angle α, and sin(α), as shown in the 

Visual Model. Note that the frequency, f, is treated as a constant. Therefore, if we measure 

angle α in radians, we can represent the same sine function as a function of time, t, as: 

 

 sin(α) = sin (2πf t)   [ 2πf is constant ] 

 

The term 2πf, which is just frequency multiplied by constant 2π, is called the angular 

frequency, often denoted with ω. Angular frequency tells you how much an angle changes 

per second. For instance, if the Ferris wheel rotates 1 rotation per second, its angle changes 

2π radians during that time, and hence, ω is 2π radians per second. Therefore, you can 

write the above relationship as: 

 

 sin(α) = sin (2πf t)  = sin(ωt) 

 

You may see all of the above three forms in books. All of them are equivalent ways of 

expressing the same sine function, which is essentially your height on the Ferris wheel. One 

form uses an angle as the input. The other two forms use time as the input variable. 

 

You may wonder why we spent so much effort to model your position on a Ferris wheel. 

What’s the purpose of all of this? One word — wheel. During the course of human 

civilization, the importance of the discovery of the wheel may be second only to the 

discovery of fire. Walking is linear motion, which is what we are used to. In contrast, 

wheels rotate. The motion around a wheel, or more precisely around a circle, cannot be 

analyzed the same way we analyze walking on a straight line. At the same time, this 

rotation is fundamental to our existence. We exist thanks to the rotation of planets around 

the Sun (although not in perfect circles). The rotation of wheels in your car takes you 

places. The rotation of generators produces electricity and the rotation of motors is the 

main workhorse of industrial civilization, from the tiny motor in your electric toothbrush 

to the giant motors in factories. The models that help us understand our Ferris wheel, help 

us understand all these other phenomena.  

 

There is yet another reason for studying rotation, which is not immediately apparent. That 

is, rotation produces waves. Assume it is dark at night and you are carrying a bright red 

light on the Ferris wheel. Assume there is someone watching your light from a long 

distance, in the same plane as the wheel, from the east of the Ferris wheel, as shown below.  
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As time passes, that observer will see the light move up and down as if you were riding a 

wave, similar to the sine wave we saw before. In other words, if the observer were to graph 

your height against time, she would get a sine wave. This is because, one component 

(vertical component or height) of rotation describes a wave. Similarly, if the observer was 

above the Ferris wheel looking down, the horizontal component (or distance from the hub) 

describes a wave. A wave is a natural product of rotation.  

 

The observer, who cannot see the Ferris wheel due to darkness, will observe (and model) 

the height of your light as a wave (against time). This is exactly how we observe many 

properties arising at a distance. That is, we don’t see rotation but we see the effect of it as a 

wave. For instance, if you measure the magnitude of voltage (or current) you receive from 

your electricity company, and plot this amplitude against time, you will get a wave. Why? 

Because the power company is generating this electricity using rotating generators, like 

hydro, steam, or wind turbines. You don’t see the turbine rotating, but you do see the effect 

(amplitude of voltage) as a wave. The same happens with electric and magnetic fields. The 

main difference is that you don’t need wires to observe the effect happening at a distance. 

Your radio station generates an electric field (and a magnetic field), and your radio receiver 

can detect the strength of it. If your radio station varies this electric field, you can detect 

that variation from a distance almost immediately. If you graph the variation you observe 

with time, you will see a wave.  

 

Our lives would be very different without sound waves and electromagnetic waves, which 

include light. All these phenomena and more can be analyzed using waves. For instance, the 

music you hear, or any other waveform for that matter, can be expressed as a linear 

combination of sine and cosine functions, the same way we can express any polynomial as a 

linear combination of power functions. Now, imagine a bunch of hamsters spinning on 

differently sized wheels, which are spinning at different speeds (different frequencies). At a 

given time, if we add up their heights, would you believe that their total height can 

represent music that comes out of your phone or radio? Well, if you could, now try to get 

that image out of your mind — little hamsters on wheels creating music in your 

smartphone. 
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All of these things in life are made possible by rotation, which is why we want tools to 

model rotation and the resulting waves. If you are still not convinced about the value of 

trigonometric models and the waves they describe, the next section gives an example of a 

real-world use that you cannot live without.  

4.6.2 COMMUNICATING WITH WAVES 

Waves are a primary tool used in communication. You get your radio signals, Wi-Fi, TV, and 

cellular signals, all thanks to waves. How do we do all that using waves? 

 

Let’s start small. Let’s take communication using smoke signals. In order to send a message, 

you need to change some property. For instance, we can use black smoke to convey one 

message and white smoke to convey another message. In this case, the property we change 

is the color of smoke. Similarly, if we want to communicate with waves, we need to change 

some of their properties. What are the properties of waves we can change?  

 

Let’s imagine (don’t ask me how) that our Ferris wheel can change its radius, every minute. 

In other words, its radius can grow and shrink. Someone watching from a distance can see 

the radius of the Ferris wheel changing. Therefore, we can use this change of radius to send 

a message to the observer. For instance, if we use Morse code, which uses dots and dashes 

to send messages, a larger radius can represent a dash while a smaller radius can represent 

a dot. What happens to your height, sin(α), as the radius changes? Your height changes too. 

This change in height is known as Amplitude Modulation or AM. The term amplitude 

refers to the output value of sin(α) function. If your height on the Ferris wheel is large, so is 

the amplitude. The following figure shows how the amplitude sin(α) changes when we 

change the radius of the Ferris wheel every minute. 
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Instead of changing the radius every minute, we can change it every second and send more 

dots and dashes per minute.  If we can change the amplitude continuously, we can 

communicate a continuously changing value to someone at a distance. This is exactly how 

you receive AM channels on your radio. The radio station is continuously transmitting a 

wave of frequency, say 2 MHz (i.e., a sine wave with a frequency of 2 million cycles per 

second). This is known as the carrier wave, and is like a Ferris wheel that rotates 

continuously without any change to its radius or frequency. The radio station can then 

change the amplitude of this carrier wave continuously to send any message — for 

instance, the voice of a weatherman. 

  

 
 

The amplitude of a sine wave can be changed by multiplying it by a coefficient (A, in the 

following example), as: 

 

s(t) = A sin(t) 

 

Notice that s, which stands for signal, is just the name of the function, which has one input 

variable t. As an example of different amplitudes, the graphs of sin(t) and 2sin(t) are given 

below. Notice the only difference is in the amplitude.  
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Are there any other properties, besides amplitude, we can change to send a message? 

Instead of changing the amplitude, what happens if we change the frequency? In our Morse 

code example, instead of changing the amplitude, to send a dash, let’s rotate the Ferris 

wheel 2 rotations per minute. To send a dot, let’s slow down to 1 rotation per minute. This 

is called Frequency Modulation, or FM. If we change the frequency every second, we can 

send more dots and dashes per minute. If we change the frequency continuously by 

speeding up and slowing down continuously, we can send a continuous message, like the 

voice of a singer. A radio station can continuously change the frequency of a carrier wave to 

do that. This is exactly how you receive FM channels on your radio.   

 

How do we model a sine wave with a different frequency? The top graph of the following 

figure shows sin(t), and the middle graph shows sin(4t), which has 4 times the frequency of 

sin(t).  In other words, sin(4t) is produced by a Ferris wheel that is rotating 4 times as fast 

as the Ferris wheel that produces sin(t). This is shown visually by the blue arrow above 

each Ferris wheel. During the time it takes the top Ferris wheel to go 1/8th of a rotation, the 

middle Ferris wheel goes ½ a rotation.  
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The bottom graph of the above figure shows what happens when you change the amplitude 

and frequency at the same time. The bottom graph, 0.8 sin(4t), models a wave with 4 times 

the frequency and 80% of the amplitude of the top graph. The general model for such a 

waveform is: 

 

  s(t) = A sin(ωt), 

 

where ω is the angular frequency and A is the amplitude. Recall that ω = 2πf, where f is the 

frequency.  

 

The above model shows how we can change both the amplitude and frequency of a sine 

wave. There is one additional property we can change in a sine wave: it is the phase shift, 

which we discussed when we introduced the cosine wave. Remember, we expressed the 

cosine wave as a sine wave shifted by 900 (π/2 radians) as: 

 

  cos(α) = sin(α + π/2)    

 

where α is measured in radians.  
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To summarize, a sine wave is characterized by 3 properties: 

1) Its frequency, f  (or ω, where ω = 2π f) 

2) Its amplitude A 

3) Its phase shift ϕ 

As a result, the general sine function can be modeled as: 

 s(t) = A sin(ωt + ϕ) 

or 

 s(t) = A sin(2πf t + ϕ) 

The following figure shows what this model can represent. On top, we have our original 

sin(t) function, which can be thought of as your height on our Ferris wheel, with a unit 

radius and is rotating at angular frequency of 1. The middle curve shows a similar sine 

wave generated by a Ferris wheel that is rotating 2 times faster with a radius of 1.25 units. 

The bottom sine wave is generated by a Ferris wheel similar to the middle one, but always 

leading the middle one by π/2 radians (900) — i.e., one with a phase shift of 900.  

 

 
The above shows how we can capture any sine wave with the model A sin(ωt + ϕ). In this 

model, we treated A, ω, and ϕ as constants. However, they don’t always have to be 

constants. If we vary amplitude, A, with time, we get amplitude modulation. If we vary 

angular frequency, ω, with time, we get frequency modulation. If we vary phase, ϕ, with 

time, we get phase modulation (yes, there is such a modulation method). For instance, an 

amplitude modulated sine wave can be written as: 
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 s(t) = A(t) sin(ωt + ϕ),  

 

where A is now a function of t. Now you should be able to 

clearly understand a model like the one above. It says s is a 

function of input t. Its recipe is a product of two functions, A(t) 

and sin(ωt + ϕ), both of which depend on t. Its Visual Model is 

given on the right. In practice, function A(t) is the “message”, 

or the input signal (e.g., music) that you want to transmit, 

while sin(ωt + ϕ) is the carrier wave. 

 

Can you write a similar model for frequency modulation, 

where ω is a function of t? Can you draw a Visual Model for it? 

(Hint: Think of function composition) 

 

The above discussion should clearly show you the practical value of the sine function, and 

its usefulness in modeling real-world relationships. The sine model can represent many 

different types of waves, where some physical property rises and falls periodically. For 

instance, when you press a key on a piano, the hammer hits a taut steel string, which causes 

the string to vibrate, creating different amplitudes (displacement from the resting position 

of string) at different positions. These amplitudes can be modeled as a wave (a sine wave in 

particular). Similarly, when a hydroelectric turbine is rotating, the amount of current (and 

voltage) generated rises and falls repeatedly. This amount (the amplitude) of current varies 

as a wave, which can be modeled with a sine function. Similarly, if you rotate an electrical 

charge, the magnitude of force felt due to that electrical charge at some distant point P rises 

and falls repeatedly and can be modeled as a sine wave. Similarly, if you ride a Ferris wheel, 

your height rises and falls as a wave, allowing us to model it using a sine wave. This is why 

we were so obsessed with your height on the Ferris wheel, because, it is the same model we 

use to model many real-world properties that change periodically.  

4.6.3 INVERSE AND RECIPROCAL MODELS OF TRIGONOMETRIC FUNCTIONS 

Since the function  f (x) = sin(x) outputs a value between -1 and 1 for any given input angle, 

the inverse of the sine function, called arcsine, outputs an angle for any input between -1 

and 1. Using our Ferris wheel analogy, if we use your height on the Ferris wheel as the 

input, the arcsine function would output the angle you make with the horizontal axis. The 

arccos function is defined similarly, as the inverse of the cosine function.  
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Since trigonometric functions are periodic functions, the input 

domain has to be restricted for an inverse function to exist. For 

instance, your height on the Ferris wheel is the same when you 

are at points p or q in the figure shown. Similarly, whether you 

are at r or s, your height is the same. Therefore, we cannot have 

both p and q (or r and s) in the domain of the sine function, if we 

want an inverse function. As a result, we have to restrict the 

domain of the sine function to points in the first quadrant 

(where p is) and the 4th quadrant (where r is), which are angles between -π/2 to +π/2. 

Using a similar argument, for the cosine function, we have to restrict the domain from 0 to 

π, because points p and r (and q and s) have the same horizontal distance from the hub.  

 

The reciprocal function of sin(x) is 1/sin(x), which is known as cosecant(x). Similarly, the 

reciprocal function of cos(x) is 1/cos(x), which is known as secant(x).  

 

We are finally done with the trigonometric family, the 4th function family we studied. For 

each of those families, we looked at different family members, their inverses, and their 

reciprocals. Before we look at how we can combine all 4 families to build more complex 

models, we will briefly look at one other heavily used function — the factorial function. 

4.7 Growing Faster than Exponential: The Factorial Function  

If you thought exponential functions grew really fast, wait until you meet the factorial 

function. With exponential functions, the output of the previous step got multiplied by a 

constant base (a constant multiplier). In the factorial function, the output of the previous 

step gets multiplied by a variable input. As the input grows, the multiplier grows as well:  

factorial (n) = 1 ∗ 2 ∗ 3 ∗ … ∗ n  

For instance, factorial(3) is 1∗2∗3, which is 6. Similarly, factorial(5) is 1∗2∗3∗4∗5, which is 

120. Similarly, factorial(10) is 3,628,800. The change in output when the input changed 

from 5 to 10 is incredible! By definition, factorial(0) is 1.  

Factorial function is useful in calculating permutations and combinations. For instance, if 

there are 6 balls of different colors, how many different ways can they be arranged on a 

table with 6 positions? Well, we have 6 positions to be filled with 6 balls. Ball A can go into 

any of the 6 positions. Thus, there are 6 ways to place ball A. For each of those positions, 

ball B can be placed in 5 positions. The following figure shows two such arrangements, 

when ball A is at position 2. Ball B is shown at position 3 in the first arrangement, and at 

position 4 for in the second arrangement. By extending this argument, you can see that, 

when Ball A is at position 2, Ball B can go into any of the 5 positions 1, 3, 4, 5, 6.   
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Since ball A can go into any of the 6 positions, and for each of those positions ball B can go 

into any of the remaining 5 positions, there are 6∗5 ways to place ball A and B. Similarly, 

after placing ball A and B, ball C can go into any of the remaining 4 positions. Thus, balls A, 

B, and C can be placed in 6∗5∗4 ways. Similarly, ball D can be placed at any of the remaining 

3 positions, and ball E can be placed at any of the remaining 2 positions. After placing ball 

E, there is only one position left, and ball F has to go there. As a result, altogether, there are 

6∗5∗4∗3∗2∗1 ways to arrange the 6 balls. As you can see, this is factorial(6).  

Since the factorial function is useful in calculating permutations and combinations, it is 

quite useful in evaluating probabilities. We will see more uses of the factorial function in 

power series expansions in Chapter 5. 

Computer code for the factorial function is given below. Notice that we are using recursion, 

the same strategy we used to calculate pushups with exponential growth.  In the code 

below, we are evaluating factorial(10).  

 

 
Within the code, factorial(10) gets evaluated using the statement: 

result = n ∗ factorial( n - 1 ) 

function factorial( n )  
{ 
 if (n == 0) 

  result = 1  

 else  

  result = n * factorial( n - 1 )  

 return result 
} 

y = factorial( 10 ) 

print( y ) 
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Note that “result” is the output of factorial(n). If n=10, to evaluate factorial(10), we 

multiply 10  by factorial(9) as: 

 factorial(10) = 10 ∗ factorial(9)      (A) 

How do we find factorial(9)? It is evaluated as: 

 factorial(9) = 9 ∗ factorial(8)      (B) 

If we put (A) and (B) together, we get: 

 factorial(10) = 10 ∗ 9 ∗ factorial(8) 

Similarly, factorial(8) is evaluated as 8 ∗ factorial(7). This process continues until we reach 

factorial(0), which is defined as 1. Therefore, factorial(10) evaluates to: 

 factorial(10) = 10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 ∗ 1 

 
The factorial function naturally leads to recursion for the same reason exponential model 

naturally led to recursion: in both models, to find the output for step n, we use the result 

from the step n−1. In fact, to find the result for step n, we multiply n by the result of step 

n−1. That’s what’s expressed with the statement:  

 result = n ∗ factorial( n - 1 )     (1) 

Note that “result” is the output of the current step (for step n). Using result of step n−1 to 

calculate the result for step n leads to rapid growth. In the exponential model, at each step, 

we multiply the result of step n−1 by the same number (e.g., by 2, or by e) as: 

 result = 2 ∗ exponential( n - 1 )     (2) 

Compare (2) with (1). In factorial function, we multiply the result of step n−1 by an ever-

increasing n (i.e., by 5 for step 5, by 6 for step 6, etc.) That’s why the factorial function 

grows much faster than the exponential function.  

Now, you should be able to compare the growth of the power function, x 
n, the exponential 

function, ex, and the factorial function, n!. Out of these three, factorial function grows the 

fastest, followed by the exponential function, followed by the power function. 

Since the factorial function increases really fast, the reciprocal of the factorial function 

decreases really fast. This 1/factorial function is a key ingredient of important 

relationships, as we will see in Chapter 5. 
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4.8 Building Larger Models from Simpler Models 

So far in this chapter, we have met 4 function families, their inverse functions and their 

reciprocal functions. These functions serve as the basic building blocks of real-world 

models. There are several common ways you can build more complicated models using 

these basic functions: 

 

1) Composition of two functions 

2) Multiplication of two functions 

3) Division of two functions (Multiplication by reciprocal) 

4) Linear combination of functions  

You can use any of the above techniques, or any combination of these techniques, to build a 

complex model. Notice that function division similar to  f (x)/g (x) is equivalent to 

multiplying  f (x) by the reciprocal of g (x). This is one of the reasons why we learned about 

the reciprocal functions.  

Similarly, an existing complicated model can be analyzed using the same techniques. As an 

example, let’s look at a common function we see in statistics, called the Normal 

Distribution, or Gaussian Distribution.  

There is a pattern to how some properties, like the height of people in a country, are 

distributed. For instance, when you walk down the street, you are more likely to meet a 

person of average height (or around that) than an extremely tall or short person. 

Therefore, we call height a normally distributed property (or informally, height has a “bell-

shaped” distribution).  

 

The simplest form of a “bell curve” takes the following form, where x is a property like 

height of a person.  

 

 𝑓(𝑥) =  𝑘𝑒−𝑥2
        (1) 

 
where k is a constant. Can you identify this model? If we replace x2 by another variable, u, 

this becomes: 
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  f (u) = k e 
-u where u=x2 

 

You know what this model is. In terms of input u, this is an exponential 

decay model. In terms of x, it says that the square of the input (x2) 

decays exponentially. Notice that this is function composition, as shown 

in our Visual Model. Since x2 is always positive, the above function f  

has the same output value whether we feed in x or -x as its input. 

Therefore, f is symmetric about the y-axis. The graph of f  is shown 

below for k=1.  

 
 

Notice that the peak value of 1 occurs when u=0, because e 
0 is 1. When u=0, x=0 as well. 

However, this is not the general normal distribution function you meet in the statistics 

class: it uses u = (x – μ)2 instead of u=x, where μ is a constant and represents the mean of 

the distribution. At which input does the peak occur in this distribution? We saw that the 

peak occurs when u=0. What’s the value of x when u=0? For u to be zero, x must be equal to 

μ. This means, that the peak of this general model occurs at x=μ. In other words, instead of 

a bell curve centered around 0, we now get a curve centered around μ (i.e., symmetric 

around μ), as shown below. The following figure shows the normal distribution curves for 

both μ=0 (gray) and μ=2 (blue). As expected the blue curve is shifted right by 2 units.  

 

One more thing: the general normal distribution given in (1) has a k term. This is simply a 

scaling factor, where every output value is multiplied by k.  
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The complete model for the normal (or Gaussian) distribution is given by the following, 

seemingly frightening formula. However, as we saw, it is quite easy to understand if we use 

the right tools.  

𝑓(𝑥) =  
1

√2𝜎2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2  

Note that μ and σ are constants. Therefore, as we saw above, we can write this as: 

 f (u) = k e 
-u where u = k2 (x – μ)2    

where k and k2 are constants. With suitable function composition, you can immediately 

identify that the above is based on the exponential decay model, in terms of input u (or in 

terms input x2). 

This example shows how you should approach complicated algebraic models. Seemingly 

daunting models can be usually decomposed into much simpler models.  

The other important lesson is that you can use function composition, function 

multiplication, and function division (which is multiplication by reciprocal) to build up new 

models.  

Let’s look at a few other examples. Can you describe each of the following models? 

(a) sin2(x) + 2sin(x) + 1 

(b) 1 / (1 + e  
-x

 )  

(c) sin(x)cos(x) 

(d) x sin(x) 
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(e) e2x - 3e 
x + 2 

(f) tan(x) 

Let’s start with (a). Can you recognize this as function composition? Hint: use variable u to 

represent sin(x). Then, (a) becomes u2 + 2u + 1, which is a polynomial. This can be 

factorized to (u+1)2. If we substitute v = u +1, this becomes v2, which is a power function. If 

we had to find the roots of this function, the roots would be v=0, which means that u=-1, 

which in turn means that sin(x) = -1. In short, if we feed sin(x) into the polynomial function 

(u + 1)2, we get (a). Alternatively, if we add 1 to sin(x) and feed that result into the 

quadratic power function v2, we get (a).   

You should be able to immediately identify (b) as a reciprocal function. First, we start with 

exponential decay function, e 
-x, and then add 1, which shifts the function up by 1 unit. Then, 

we take the reciprocal of all of that. When we take the reciprocal, high output values 

become low and low output values become high. Function (b) is called the logistic growth 

model, and it models how a population (e.g., a mosquito population in a region), grows 

under constraints.  

You should see (c) and (d) as the product of two functions, in the form of  f (x) = g (x) ∗ h (x). 

If we have to find the roots of this product to solve the equation  f (x) = 0, you can treat g (x) 

and h (x) as factors. Therefore, the roots of g (x) and roots of h (x) become the roots of the 

combined function  f (x).  

Do you see the similarity between (e) and (a)? Again, this is function composition. If you 

substitute u = e 
x in (e), you would get the polynomial u2 − 3u + 2, which can be factorized as 

(u−1)(u−2). If we had to find the roots, the roots are u=1 and u=2, or e 
x = 1 and e 

x = 2, 

which occur at x=0 and x=ln(2).  

We already saw that tan(x) is function division in the form f (x) = g (x)/h (x), where 

g (x) = sin(x) and h (x) = cos(x). If we had to find the roots of  f (x), we have to look at the 

roots of g (x), which are roots of sin(x). Similarly, if we have to find the values at which  f (x) 

is not finite, we have to look at roots (zeros) of  h (x) , or cos(x).  

Isn’t it fascinating how you can build more complex models from the simple functions we 

learned about? Consequently, when we are given a more complicated model, we should 

always try to think about how that model can be composed from simpler functions.  

4.9 Summary of Function Families 

The following table summarizes the 4 function families we met in this chapter:  
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1) Power function family: the input n is raised to the nth power. The inverse is the nth 

root and the reciprocal is 1/xn (or x 
-n).  

2) Polynomial function family: a sum of power functions. The reciprocal is just 

1/function. For the linear function, the inverse is a linear model as well. The general 

polynomial model may not always have inverse functions. 

3) Exponential function family: a given base is exponentiated by the input. The inverse 

is a logarithmic function, whereas the reciprocal is an exponential decay function.  

4) Trigonometric function family: represents the linear projections (height/distance) 

of a rotating object. The basic members of this family are sine and cosine. Their 

reciprocals are cosecant and secant, respectively. The inverse functions of this 

family outputs angles.  

 
Function 

Family 
Important 

Member Function 
Inverse of Member 

Function 
Reciprocal of 

Member Function 

Power 
 x x 1

 / x  = x -1 
 x 

2 x 
½ = √𝑥 1

 / x 
2 = x -2 

 x 
n x 

1/n = √𝑥
𝑛

 1
 / x 

n = x -n 

Polynomial 
 ax + b (x – b)/a 1

 / (ax + b) 
 ax2 + bx + c -b ± (b2−4a(c-x))½  / 2a † 1

 / (ax2 + bx + c) 
Exponential 

 2x log 2(x) 2 
-x 

 10x log10(x) 10 
-x 

 e x ln(x) e -x 
Trigonometric 

 sin(x) arcsin(x) 1
 / sin(x) = cosec(x) 

 cos(x) arccos(x) 1
 / cos(x) = sec(x) 

† Note that this is an inverse relation and not one inverse function, since it describes two inverse functions as 

we saw in Section 4.4.2.2. 

 

In addition to these broad families, we met the factorial function, where positive integers 

from 1 to n are multiplied together to produce the output for an input n. We also looked at 

linear combinations, which are just linear functions of more than one input.  
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4.10 The Story So Far 

In the previous chapters, we saw how functions came into existence, their common 

properties, their common problems, and the objects they consume and produce. This 

chapter was dedicated to looking at different families of the function dynasty, and what 

they are good at. 

If you have ever seen a construction crew building a house, you would have noticed a wide 

array of talent. There are carpenters, electricians, roofers, plumbers, masons, architects, 

structural engineers, supervisors, painters, and so on. Similarly, building models that can 

represent the real-world requires a diverse set of talents. In this chapter, we saw how 

functions step up to the plate to fulfill that demand.  

We explored the function families in a methodical way. Primarily, we looked at 4 families: 

power functions, polynomial functions, exponential functions, and trigonometric functions. 

For each of those families, we looked at its inverse and reciprocal families. This gave us a 

cohesive view on how all functions are related.  

As you saw, some functions were pretty simple fellas. For instance, a power function just 

makes its input “more powerful” by multiplying its input by itself a given number of times. 

However, when many such simple power functions are added together (linearly combined), 

the result is a polynomial, which is a much more capable model.  

Then, we encountered exponential functions, which can make input expand over a large 

range, and their inverse functions, logarithmic functions, which can compress an input into 

a small range. Similarly, we saw the reciprocal model of exponential functions, which model 

exponential decay.  

As our 4th family, we looked at a class of functions that are useful in representing rotation 

or periodic behavior. We saw how these functions can be used to model waves, and how 

they can model communication based on waves.  

Just when we thought power functions grew fast, we met exponential functions. When we 

thought those were growing super-fast, we met the factorial function, which grew even 

faster.  

We also saw how all of these different types of functions model real-world phenomena we 

study in physics and engineering. In particular, we looked at a technique for analyzing 

functions with multiple inputs as linear functions with just one variable input and output.  

Finally, we looked at how we can combine simpler functions to produce much more 

complex functions, that can model the real-world relationships that we are interested in.   
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5 SERIES: FUNCTIONS UNLIMITED 

Chapter Overview: This chapter introduces you to the concept of a series, where we 

combine multiple terms, sometimes an infinite amount, to come with a series of terms. We 

will see how such series can approximate functions we have seen before, uniting seemingly 

unrelated function families.   

In Section 4.2.4, we saw how any polynomial function can be represented as a series of 

power functions. A polynomial function has a finite (limited) set of terms. For instance, take 

the following cubic function: 

  f (x) = 2x3 + 9x2 – 2x + 1      (1) 

How was that cubic function made? Well, we built up a function using a series of 4 terms 

(i.e., as a sum of 4 different power functions). In other words, a series is another way to 

build a more complex function using simpler functions. For a polynomial, this does not 

come as a real surprise. But can we do the same for other functions?  

Before we can answer this question, we need to get accustomed to series notation. Let’s 

start with the familiar polynomial model.   

5.1 A Polynomial as a Series 

An nth degree polynomial has at most n+1 terms. In other words, an nth degree polynomial 

is a series (a sum) of n+1 terms, as shown below.  

  f (x) = a0 x0 + a1 x 1 + a2 x 2 + a3 x 3 + … + aN x 
N   (2) 

Take a look at each term. For instance, let’s look at a2 x2, which is a power function. This 

term represents 9x2 in (1) above. In a2 x2, a2 is the coefficient and x2 is the input raised to 

the second power (i.e., the input is squared). A polynomial is a series (a sum) of such terms, 

where the power of the input can be from 0 to n — that is, from x0 (which is the constant 

term) to xn. Make sure you understand this before we move on. 

The above series can be written using Sigma function (summation operation). We use the 
Greek letter Sigma to represent this summation operation, as follows:  
 

𝑓(𝑥) =  ∑ 𝑎𝑛

𝑁

𝑛=0

𝑥𝑛
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It is very important to understand the above notation. Let’s start with an xn. Let’s say that n 

is 2.  Then, this term becomes a2 x2, as we saw in (2). It means, a2 is the coefficient and x2 is 
the power of the input (in this case, the input is squared). If a2 is 9, this term represents 9x2. 
The Sigma notation says that n starts at zero and goes until N (notice the notation above 
and below the Sigma sign). That is, n starts at 0 and increments one by one, until it reaches 
N. When n goes from 0 to N, we get all N+1 terms. That is, when n=0, we get the constant 
term, a0 x0, when n=1, we get the linear term, a1 x1, and when n=2, we get the quadratic 
term, a2 x2. We continue until n is equal to N. When n is equal to N, we get the Nth term, 
aN xN. We sum up all of these terms (Sigma means sum), to get the function  f (x) on the left-
hand side.  
 
If N is equal to 3,  f (x) is a 3rd degree polynomial with 4 terms. If N is equal to 2,  f (x) is a 

quadratic polynomial with only 3 terms. It is extremely important to understand Sigma 

function (operator) before we move on.  

 

 
The computer code for evaluating a series is given below. To start, let’s assume that all 

coefficients are 1. If we evaluate sigma(2, 4), the code will evaluate the polynomial: 

  f (x) = x0 + x1 + x2 + x3 + x4 

at x=2. This will evaluate to 1+2+4+8+16 = 31. 

 

 
In our sigma function, we start by initializing the variable “sum” to zero. The variable sum is 

like an empty bag, and we will add each term to this bag as we go on. Next, we have a new 

structure called a ‘for loop’. This for-loop represents Sigma notation nicely. Remember, 

how Sigma notation instructs n to take integer values from 0 to N? That’s exactly what the 

function sigma( x, N )  
{ 
 sum = 0  

 for n=0 to N 
 { 
  term = power( x, n ) 

sum = sum + term 
 } 

 return sum 
} 
 

y = sigma( 2, 4 )   

print( y ) 

 

A polynomial is a series of power functions 
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loop statement ‘for n=0 to N’ does. It takes the variable n from 0 to N, one step at a time. 

At each step, we evaluate one term of the polynomial as we do with the Sigma notation. For 

instance, when n=2, we calculate the x2 term.  

To calculate the power of a given term, we get help from another built-in function, named 

“power”, which we also used for exponentiation in Section 3.4. For instance, when n is 3, we 

call power (2, 3), to calculate 23. Once we calculate the value of a term, we add it to the sum 

(our bag). That’s what Sigma operator (summation) does as well. The statement “sum = 

sum + term” tells just that. It just says to put another term into our bag holding the current 

sum. For instance, at the start, “sum” is zero. In the very first step, the value of “term” is 1, 

because power(0,1) is 1. So, we have sum = 0 + 1, and hence the new value of “sum” 

becomes 1. We continue this loop until n becomes equal to N (i.e., until we calculate all n+1 

terms and add them to our bag). 

It is quite illuminating to see the similarities between Sigma notation and the “for loop” in 

computer code.  You can see the same overall structure in both forms. Mainly, we add a 

sequence of terms, from n=0 to N, to produce a sum. The computer code should help you 

look at Sigma notation as a function (or operator) with a recipe to generate N terms and 

add them together.  

If you are a computer programmer, please note that we don’t follow the syntax of a 

particular computer language precisely but you should be able to change it to the syntax of 

your favorite language quite easily.  What’s really important is understanding the 

connection between math and computer code.  

In the computer code we just looked at, we used a built-in power function, which evaluates 

x 
n. However, it is quite easy to write your own power function for non-negative integer 

powers by multiplying x by itself n times, as shown below. This also uses a “for loop”. We 

start with product equal to 1. In each step (iteration) of the loop, we multiply the current 

value of product by x. In the first step, we multiply product by x, which results in x. In the 

next step, we multiply this result by x again, resulting in x∗x. We continue this for n steps, 

to get x 
n. 

Sigma operator is modeled by a “for loop” 
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The sigma function we wrote above assumes that all coefficients are 1. That’s rarely the 

case. To fix this issue, we can store the coefficients in an array. Think of an array as a set of 

slots, each holding one value. If the name of the array is ‘coefficients’, the expression 

coefficients[0] represents the 0th slot of the array, coefficients[1] represents the 1st 

slot of the array, and so on. The array shown below stores 4 coefficients to represent the 

coefficients of the polynomial 5 + 3x + 4x2 + 2x3.  

5 3 4 2 
coefficients[0] coefficients[1] coefficients[2] coefficients[3] 

 

 

The new code that accepts a coefficient array is shown above. Now, the function uses the 

corresponding coefficient, coefficients[n], to calculate the nth term. That’s all. 

Notice how we call (use) the above sigma function. First, to start with, we put values 

5, 3, 4, 2 into the coefficients array to represent coefficients of 5 + 3x + 4x2 + 2x3. Then, we 

call the sigma function to evaluate this cubic function at x=2. The print statement should 

print 43, since 5 + 3x + 4x2 + 2x3 at x=2 is 5+6+16+16  = 43. 

function sigma( x, N, coefficients )  
{ 
 sum = 0  

 for n=0 to N   // n goes from 0 to N 
 { 
  term = coefficients[n] * power( x, n ) 

sum = sum + term  // each term is added to sum 
 } 

 return sum 
} 

coefficients = [5, 3, 4, 2]  // 5 + 3x + 4x2 + 2x3  

y = sigma (2, 3, coefficients)  // evaluate at x=2 

print( y )     // prints 43 

function power( x, n )  
{ 
 product = 1    // initialize product to 1 

 for n=1 to N   // n goes from 1 to N 
 { 

product = product * x // multiply product by x  
 } 

 return product 
} 
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5.2 The Sky is the Limit: Power Series 

In the previous section, we represented a polynomial function with a series of a finite 

number of terms. This raises the question whether we can represent other types of 

functions, in addition to polynomials, using a series. As we will see shortly, the answer is 

yes. However, there is one catch. Most of the time, we will need an infinite number of 

terms, compared to the finite number of terms we need for a polynomial. 

If I ask you to name an infinite series that you use every day, you might say, “Wait! I don’t 

use any infinite series — I hardly know any”. That’s not true. If you buy a Latte, for $3.99, or 

buy gas for $3.499, you are using a system built on infinite series: decimal numbers. 

To start, let’s see how we can express a whole number (an integer) using the decimal 

notation. Let’s take number 5897. It can be represented as: 

 5897  = 7∗1 + 9∗10 + 8∗100 + 5∗1000  

In general, we can express a decimal number as: 

   a0∗1 + a1∗10 + a2∗100 + a3∗1000 + …  

You can immediately notice that 1, 10, 100, 1000, etc. are powers of 10. Therefore, we can 

write 5897 as: 

 5897 = 7∗(10)0 + 9∗(10)1 + 8∗(10)2 + 5∗(10)3 

Therefore, in general, we can write an integer in decimal notation as: 

  a0(10)0 + a1(10)1 + a2(10)2 + a3(10)3 + … + an(10)n + …  (1) 

Notice that if we replace 10 with x, (1) would be a polynomial of x with an infinite number 

of terms. Therefore, we can write an integer as a function of x as follows: 

 f (x) = a0 x0 + a1 x1 + a2 x2 + a3 x3 + … + an xn + …    (2)  

When x=10, we get the decimal notation.  

The above is an infinite series, because in a decimal number, we can have an infinite 

number of digits. The term an xn represents the nth digit. Recall that x0 is 1, because any 

number raised to the power of zero is 1.   

Note that the right-hand side of (2) can be represented more succinctly using Sigma 
notation:  
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𝑓(𝑥) =  ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛
 

 
The right-hand side represents an infinite series, because there are an infinite number of 

terms on the right-hand side. We call this series a power series, because each term is a 

different power of input, x, and there is an infinite number of terms.  

 

 
In computer code, here is how you can represent 5897 with the sigma function we wrote 

above: 

 
 
Quick quiz: if we wanted to write a representation of any binary number using Sigma 

notation, how would you do that? You guessed right. We just have to use x=2 instead of 

x=10. Therefore, (2) represents the formula for writing a whole number in any base. 

Another quiz: how would you write a decimal fraction, like 0.6879, using (2)? One easy way 

is to use x=0.1. Note that powers of 0.1 gives 0.1, 0.01, 0.001, 0.0001, etc. Similarly, you can 

write any binary fraction with x=½.  As an example of fractional representation, here is the 

computer code to produce fraction 0.3547891. 

 

 
What if we wanted to represent a decimal number that has both a whole part and a 

fractional part, like 53.234? We can extend (2) to do that. Can you think of a way? Hint: 

notice that 10−1 = 0.1 and 10−2 = 0.01. Now you should be able to see it. Yes, we should 

allow n to be negative as well. Therefore, we can represent any decimal number with the 

following function f, when x=10. 

coefficients = [7, 9, 8, 5]  // coefficients of 5897 

y = sigma( 10, 4, coefficients ) // 4 terms with x=10 

print( y )     // prints 5897 

coefficients = [3, 5, 4, 7, 8, 9, 1]  

y = sigma( 0.1, 7, coefficients )  // x=0.1, 7 terms 

print( y )      // prints 0.3547891 

A decimal number is a Power Series 
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𝑓(𝑥) =  ∑ 𝑎𝑛

∞

𝑛=−∞

𝑥𝑛
 

 
Time for a quiz: what’s an example of a decimal number with an infinite number of digits? A 

decimal number like 32.3214 does not need an infinite number of digits. However, 

irrational numbers like π or √2 do. 

As you can see, an infinite power series is not such an exotic concept as it looks at first 

glance.   

5.3 Maclaurin and Taylor Series 

In the previous section, we saw how we can use an infinite series to model a function that 

produces decimal numbers. Can we express other functions in the same way, and if so, is 

there a way to find the terms of the series that represent those functions?  

The answer to both of those questions is yes. Let’s look at the easiest method to do this 

first: Maclaurin series. The Maclaurin series models a function as a series of power terms, 

similar to the model describing the decimal notation. Remember, polynomials are a series 

of power terms, but the number of terms is finite. You can look at the Maclaurin series as an 

“infinitely long polynomial”.  Therefore, the Maclaurin series of a given function  f (x) can be 

written as: 

   f (x) = a0 x0 + a1 x1 + a2 x2 + a3 x3 + … + an xn + …   (3) 

 

𝑓(𝑥) =  ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛
 

 
In the Sigma notation given above, the only difference from a polynomial is the upper 

bound. Now it is infinite. The terms remain the same.  This is exactly what we saw in the 

previous section when representing an integer decimal number. So, what’s different?  

If a Maclaurin series is an “infinitely long polynomial”, in order to get a function, all we have 

to do is find the coefficients, an, of this infinite series. Different coefficients represent 

different functions. Maclaurin series tell us exactly how to find those coefficients. Let’s look 

at an example. 

Let’s say we want to find the power series expansion of e 
x. If such a power series existed, 

using (3), we could write: 
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 e x = a0 x0 + a1 x1 + a2 x2 + a3 x3 + … + an xn + …    (4) 

If we can find each coefficient an, then we get the power series expansion of e 
x. Now, how 

do we find each coefficient? Finding a0 is easy. If we evaluate equation (4) at x=0, we get: 

 e 0 = a0 00 + a1 01 + a2 02 + a3 03 + … + an 0n + …    (5) 

We know that e 
0 and 00 are 1. All other powers like 01, 02, …, 0n are just zero. Thus, we get: 

1 =  a0 

Yay! We found the coefficient of the 0th term, a0. That was quite easy. Because a0 was the 

coefficient of the power function x0, evaluating (4) at x=0 was all that was required to find 

a0.  However, we cannot simply continue this process and find a1, because a1 appears as the 

coefficient of power function x1, as a1 x1. However, if there were a way to make that power 

function x0, giving us the term a1 x0, then, we could set x=0 to find a1. But, how on earth can 

we get power function x0 from power function x1? That’s where calculus comes in. To do 

that, we have to find the slope of a function. If you know calculus, that’s the derivative of 

the function. If you haven’t taken calculus, just look at it as the slope of the function at a 

given point, as you would find from its graph.  

Since (4) is an equation, we have to apply the same operation to both sides. Therefore, we 

find the slope of both sides of (4). Let’s start with the left side. What’s the slope of e 
x? From 

Section 4.3.1, we know that the slope of the natural exponential function is the same as the 

output of e 
x. That is, the slope (derivative) of e 

x is e 
x itself!  

Now, we have to find the slope of the right-hand side of (4), which is a sum of power 

functions. From calculus, the slope of the power function xn is given by another power 

function, n xn-1. Notice that xn-1 has a power that is one lower than xn. For instance, the slope 

of x2 is given by function 2x1. Similarly, the slope of power function x1 is 1·x0, or just 1, 

which we can easily see from its graph — i.e., the function  f (x) = x is a line with a slope of 1.  

Furthermore, the slope of x0 is 0, because x0 is just 1 — i.e., f (x) = 1 is a horizontal line, 

which has a slope of 0. Therefore, by using the slope (derivative) of both sides of (4), we 

get: 

 e x = 0 + 1 a1 x0 + 2 a2 x1 + 3 a3 x2 + … + n an xn-1 + …   (6) 

Now, if we evaluate the above slope at x=0, we get: 

 e 0 = 0 + 1 a1 00 + 2 a2 01 + 3 a3 02 + … + n an xn-1 + …   (7) 

Again, we know that e 
0 and 00 are 1, and all other powers like 01, 02, …, 0n are just zero. 

Thus, we get: 
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 1 =  1 ·  a1  ⇨  a1 = 1 / 1  

Yay! We found the coefficient of the 1st term too. Now, to find other coefficients, we can 

repeat this entire process of taking the slope of both sides and setting x=0. If we take the 

slope (derivative) of (6) and set x=0, we get: 

 1 = 1 · 2 · a2   ⇨  a2 = 1 / (1 · 2)  

By repeating this process again and again, we get: 

 1 = 1 · 2 · 3 · a3  ⇨  a3 = 1 / (1 · 2 · 3) 

 1 = 1 · 2 · 3 · a4  ⇨ a4 = 1 / (1 · 2 · 3 · 4) 

In general, for the nth term, we get the coefficient: 

 1 = n! an   ⇨  an = 1 / n! 

Putting all the coefficients together, the power series expansion we get for e x is given 

below.  Notice that, in essence, what we have is an infinite polynomial (an infinite number 

of power functions). The coefficient of the nth term is given by the reciprocal of the factorial 

of n. 

𝑒𝑥 = 1 +  
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ +  

𝑥𝑛

𝑛!
+ ⋯ 

In Sigma notation, we can write this as: 

𝑒𝑥 =  ∑
𝑥𝑛

𝑛!

∞

𝑛=0

 

 

Now, you may ask - why will we ever need to know any of this? Well, have you ever thought 

about how your calculator or computer calculates e 
3.015? This is exactly how they do it. Of 

course, calculators and computers don’t evaluate an infinite number of terms. They stop 

after a given number of terms and get a very reasonable approximation with a very small 

error. The beauty of this method is that you can always decrease the error by calculating 

more terms.  

Why do you think we can ignore the higher order terms? There is a clue in the coefficients. 

Which model represents the denominator of the coefficient? It’s the factorial function. 

Remember how quickly the factorial function grows? Remember how it grows faster than 

the power function and the exponential function? So, what happens to each term when the 



147 
 

denominator gets super large due to the factorial? The coefficient approaches zero really 

fast.  

As an example, let’s write computer code for the Maclaurin series expansion of e 
x and use 

that to approximate the value of e 
2.01, with 5 terms and 10 terms. Recall that we wrote 

computer code for the factorial function in Section 4.7. 

 

 

The above function exp calculates e 
x using N terms of the Maclaurin expansion. As 

expected, each term is calculated as a fraction between x 
n and factorial(n).  As n increases, 

the factorial(n) becomes much larger than x 
n, which makes ‘term’ smaller and smaller.   If 

you calculate e 
2.01 using a calculator, you can see that the value we get with 10 terms is 

quite accurate. However, if we use only 5 terms, we are close but not accurate enough for 

most purposes. The Maclaurin series, thankfully, allows us to get higher precision by doing 

more work.  

Similar Maclaurin series expansions are available for sin(x), cos(x), and many other 

functions. Since we need calculus to derive them, we will just list the expansions here. The 

Maclaurin series for sin(x) is very similar to the series of e 
x, with only two differences: (i) 

only odd powered terms are present, and (ii) the coefficient of every odd term is negative. 

Thus, we get: 

sin(𝑥) =
𝑥

1!
−

𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯ 

function exp( x, N )  
{ 
 sum = 0  

 for n=0 to N-1     
 { 
  term = power( x, n ) / factorial( n ) 

sum = sum + term 
 } 

 return sum 
} 
 

y = exp( 2.01, 5 )   // e2.01 using 5 terms 

print( y )    // prints 7.0636 

y = exp( 2.01, 10 )   // e2.01 using 10 terms 

print( y )    // prints 7.4630 
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Note that the coefficient of every odd (1st, 3rd, 5th, etc.) term is negative (we start counting 

terms from zero, when n=0, so x is the 0th term). The series for cos(x) is similar to the series 

of e 
x, with only two differences: only even powered terms are present, and every odd term 

has a negative coefficient, just as in the series for sin(x). Note that the 0th term, 1, can be 

thought of as x0/0!, because x0 is 1 and 0! is defined to be 1.  

cos(𝑥) = 1 −  
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+

𝑥8

8!
− ⋯ 

 
This can be written compactly using Sigma notation as: 

cos (𝑥) =  ∑
(−1)𝑛𝑥2𝑛

(2𝑛)!

∞

𝑛=0

 

 
As you can see, we express the alternating negative sign using (-1)n, because even powers 

of -1 are positive and odd powers of -1 are negative. Additionally, the term 2n appears as 

the exponent and input to the factorial function, because only even terms are present. 

Quick quiz: how would you modify the above sigma notation to express sin(x)? Remember, 

with sin(x), only odd terms are present. Thus, instead of using 2n above, we have to use 

2n+1.  

As you may have noticed, we obtained the series for sin(x) and cos(x) from the series for ex. 

This relationship will become really useful in Section 6.6. Functions like e 
x, sin(x), and 

cos(x) are called transcendental functions because we need an infinite series of terms to 

express them. In contrast, functions that can be expressed in a finite number of basic 

algebraic operators (addition, multiplication, square root, …) are called algebraic 

functions. Therefore, transcendental functions are non-algebraic.   

The computer code for evaluating the value of the cosine function using N terms of the 

Maclaurin series is given below. For this evaluation, it may help you to look back at the 

Maclaurin series for cos(x) in Sigma notation. Again, we calculate the sign of each term 

using (-1)n. A variable called two_n is used to represent 2n. The variable two_n is used as an 

input to the power function (for x2n) and the factorial function (for (2n)!). 
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The more general form of the Maclaurin series is called the Taylor series. Hence, some texts 

may refer to the above expansions of e 
x, sin(x), and cos(x) as Taylor series expansions. To 

find the coefficients of series, instead of finding the slopes at input 0 (i.e., x=0), Taylor 

series finds the slopes of functions at some arbitrary input value a (i.e., x=a). This helps find 

the series expansions of functions that are not defined at 0.  

Now you should be able to fully apricate the value of power series and in particular the 

value of Maclaurin and Taylor series. In the real-world, they give us an easy way to evaluate 

transcendental functions like ex, sin(x), cos(x), using calculators and computers. At a more 

theoretical level, these series hint at us a connection between the exponential function and 

trigonometric functions. We will explore this in the next chapter.  

5.4 Fourier Series 

The Maclaurin and Taylor series can be used to build up functions using power functions 

(terms). Quite importantly, they show how more complicated functions can be built up 

using simpler functions. Conversely, they also show that more complicated functions like ex 

or sin(x) can be broken down (decomposed) into an infinite number of simpler functions 

(power functions). 

The Fourier series does the same thing for periodic functions (e.g., any waveform). Instead 

of using polynomial terms to build up functions, Fourier series uses sine and cosine 

functions to build up any waveform. That is, any periodic waveform can be built up using 

an infinite number of sine and cosine functions with different frequencies and amplitudes.  

function cos( x, N )  
{ 
 sum = 0  

 for n=0 to N-1 
 { 
  two_n = 2 * n 

  sign = power( -1, n ) 

  term = sign * power( x, two_n ) / factorial( two_n ) 

sum = sum + term 

 } 

 return sum 
} 
 
y = cos( 1.33, 10 )   // cos(1.33) using 10 terms 

print( y )     
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We will not go into mathematical details of Fourier series. However, Fourier series is yet 

another example demonstrating the power of infinite series and how we can use infinite 

series to model the real world.  

5.5 The Story So Far 

In the previous chapters, we learned about the function dynasty: how functions came into 

existence, their common properties, their common problems, the objects they consume and 

produce, and their most popular families. In this chapter, we looked at how an infinite sum 

of simpler functions can model much more complex functions. 

You may have seen a brawny guy moving a heavy object. However, a group of kids may be 

able to do the same. That’s the power in numbers. If you have an infinite number of 

increasingly more powerful guys, that group can take the place of one really powerful 

person. We saw that with infinite series, where an infinite sum of simpler functions can 

represent a much more sophisticated function. In particular, we learned about the power 

series, which is essentially an infinite sum of power functions, which can represent 

transcendental functions like exponential and trigonometric functions.  

Even something as mundane as a decimal number is the result of a power series. You may 

know that ancient Romans could not figure out this decimal representation of numbers, 

because they couldn’t figure out the power series (positional value). That’s why Roman 

numerals and their number system is not as useful as the decimal or binary 

representations. 

The ability to approximate a more powerful function using a sum of simpler functions has 

ginormous practical implications. That’s exactly what your calculator does whenever you 

press e 
x. That’s what the world’s most powerful supercomputers do when they have to find 

e 
x or sin(x) or any other transcendental function for complicated calculations. You will see 

another application of infinite series in the next chapter, when we examine Euler’s Identity.  

Just as you can construct a more complex function by combining multiple power functions 

together, by adding many sine functions together, you can construct any waveform. This is 

the basis of the Fourier series and Fourier transforms. All of the digital music you hear, 

digital movies you watch, and cell phone calls you receive, are made possible by these 

fundamental mathematical models.  
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SECTION II: BEYOND FUNDAMENTALS 
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6 FUNCTIONS THAT CAUSE (YOUR HEAD TO) SPIN 

Chapter Overview: This chapter expands the concept of a number to represent two-

dimensional objects. We will see how that allows us to build richer models, especially that 

support rotation, with the help of our old friend, multiplication operator.  

We use numbers to abstract real world objects. When we say we have 10 cows, we are 

using the number 10 to abstract the cows regardless of whether each cow is sitting, 

sleeping, munching, heading east, heading west, or jumping over the moon. This 

abstraction works really well for this case (counting cows). But does it always work? 

 

Let’s start with a puzzler. There are 10 identical cannons. A cannonball shot from each 

cannon falls exactly 1 mile from the cannon (not even an inch off). A shooting range has an 

X marked on the ground. Each cannon is brought on to this X mark (one after the other) and 

ordered to fire 3 cannonballs. If we keep a target exactly 1 mile from point X, how many 

cannonballs will hit the target?  

 

Since there are 10 cannons and each fires 3 cannonballs, 30 cannonballs must hit the 

target. Right? Wrong! I omitted one crucial detail: although each cannon has to fire from X, 

the cannon can be pointed in any direction (e.g., east, west, northeast, north of northeast, or 

in any other direction). Therefore, it would be lucky coincidence if any of the cannonballs 

hit the target.  

 

If you think the above puzzler is pure obfuscation, think a little bit harder. The problem is 

deeper than that. The number 10, which we used to represent 10 cannons, did not do a 

good job at representing 10 cannons, because a cannon can be rotated and pointed in any 

direction. We figured this out the hard way — when none of our cannonballs hit the target. 

 

If number 10 cannot represent 10 cannons faithfully, which number can do that? We ran 

into a similar situation, mathematically, in Section 3.1.2. Remember, when we walked 3 

steps forward and 5 steps backward? We found out that whole numbers just failed to 

represent the outcome of that exercise. So, we had to expand our definition of numbers to 

include negative numbers. A similar situation with division forced us to expand our notion 

of numbers to include fractions. 

 

But the situation with cannons is even harder than that. We can use negative numbers to 

represent the “opposite” direction, but not any direction. We will soon encounter a number 

that can do just that. Our failed attempt at representing the real-world with real numbers 

will again reveal the answer. 
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As you know, when we square some number x, we get x2. We call x 

the square-root of x2. The square-root function is the inverse of the 

square function. The problem is that x2 is always positive. Hence, if 

we want to find the square-root of a negative number, we can’t find 

one, because there is no number that gives a negative number 

when squared. Simply put, there is no number that can represent 

the square root of a negative number, such as √-1.  

 

When faced with such a hurdle, we can do the same thing we did 

before when we encountered negative numbers and fractions: we 

invent a new number and see where that takes us.   

 

To investigate this “new number”, let’s start by giving it a name. Let’s call this new number 

i, which is equal to √-1.  What do we know so far about this number? We only know its 

definition — i is a number that when squared, will give us -1. That’s all we know. Let’s write 

down what we know: 

 

 i ∗ i = i 2 = -1  

 

What does this mean? Well, i 2 behaves like -1. But how does -1 behave? As a multiplier, -1 

causes reflection (rotation by 1800), as we discussed thoroughly in Section 3.3.2. We can 

write this as follows: 

 
 i 2   ⇨ rotation by 1800 

 i ∗ i ⇨ (some effect) ∗ (some effect)     (1) 

 

According to (1), if multiplying by i causes “some effect”, when that “effect” is repeated, we 

should get rotation by 1800. With a little bit of thinking, we see that this “some effect” is 

rotation by 900. This is because if we rotate something by 900, and again rotated that result 

by 900, we get rotation by 1800, as shown below. 

 
To verify that multiplying by i rotates a number by 900, let’s look at several examples. Let’s 

start with what we know. We know that: 
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  i 2  = -1 

What about i3 ? 

  i 3  = i 2 ∗ i 

   = -1 ∗ i   = - i 

What about i4 ? 

  i 4  = i 3 ∗ i   = -i ∗ i   = -(i 2)  = 1 

 

We can summarize multiplication by i using the following figure.  

 

As evident from the above figure, multiplying by i causes a number to rotate by 900, 

counter-clockwise.  

 

 

Similarly, what does multiplying by -i do?  

  1 ∗ -i  = -i 

 -i ∗ -i  = i 2 = -1 

 

Therefore, multiplying by -i causes rotation by 900, clockwise. As we discussed before with 

trigonometric functions, we represent clockwise angles as negative angles. Therefore, this 

is a rotation by -900. 

Multiplying by i causes rotation by 900 
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Does it look like we have a number that can represent a cannon in our puzzler? Not quite, 

but we are getting there.  

6.1 A “Rotated” Number 

When we encountered negative numbers for the first time, we wanted to see how it would 

behave with our fundamental operators: addition, subtraction, multiplication, and division. 

If i is like any other number, we should be able to do operations like addition, subtraction, 

multiplication, and division with it.  

 

Let’s start with addition. If we add 1 to i, we will have to represent 

the result as 1+ i. We cannot simplify it further than that because the 

two numbers do not have the same orientation (rotation). However, 

i + i can be added together to yield 2i, because they have the same 

orientation.  

 

Here is another way to look at a number like 1+ i. How do we describe 5+7? We go 5 steps 

(say forward), and then go another 5 steps, in the same direction (forward). How about 5 + 

(-3)? We go 5 steps forward and 3 steps backwards. Then, what about 1+ i ? We go 1 step 

forward, then turn 900 (turn left), and go 1 step forward in that direction. That is, go one 

step forward and one step to the “left”. Where we end up can be represented by 1+ i, as 

shown in the figure.  

 

The number 1+ i has one real part (the 

real number 1) and one part that is 

rotated by 900 counterclockwise, relative 

to the real part. We call this rotated part 

the “imaginary” part. Note that the word 

“imaginary” is a misnomer — there is 

Multiplying by -i causes rotation by -900 
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nothing imaginary about it.  If going one step forward is real, so is going one step to the left. 

Therefore, it is better to refer to the imaginary part as the “900 rotated” or the “orthogonal” 

part.  

 

As shown in the above figure, 1+ i as a whole is rotated by 450, because we went one step 

forward and one step to the left. From geometry you learned in school, 1+ i makes a 450 

angle with the real (horizontal) part, as shown above. 

 

To get a little bit more intuition about this number, let’s look at 1+ i in a different way. Let’s 

see what happens if we square 1+ i.  

 

(1+ i)2  = 1 + 2i + i2  = 2i (because i2 is -1) 

 

To derive the above, we used the distributive property as follows: 

 

(1+ i) (1+ i) = 1(1+ i) + i(1+ i) = 1 + i + i + i 2 = 2i 

 

What does this mean? 1+ i multiplied by itself yields the imaginary (or rotated) number 2i. 

Which means 1+ i is the square root of 2i. Therefore, we can deduce the following: 

1. 1+ i must have a rotation of 450 with respect to the real part. This is because the 

square of 1+ i produces 2i, which we know makes a 900 angle with the real part 

2. The magnitude, or the length, of 1+ i is √2, because when squared 1+ i produces 2i, 

which has a magnitude of 2.   

3. The square root of an imaginary (“rotated”) number, seems to be an imaginary 

number itself. 

 
Because of the 1st observation above, we can draw 1+ i as shown on the left figure above, 

making a 450 angle with the real part. Because of the 2nd observation, we know that 1+ i has 

a magnitude of √2. Incidentally, we get √2 if we apply the Pythagorean formula to the left 

most figure, because both i and 1, have a magnitude of 1.  The right figure shows how 1+ i 

acts as the square root of 2i. 
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A number like 1+ i, which has both a real and an imaginary part, is called a complex 

number. A general complex number can have any number of real and imaginary parts. For 

instance, 3 + 2i has 3 real parts (3 steps forward) and 2 imaginary parts (2 steps to the left). 

Therefore, we can represent a general complex number as a + bi, where a is the real part (a 

steps forward) and b is the imaginary part (b steps to the ‘left’).  

In general, we can use orthogonal axes to represent real 

and imaginary parts of a number, because 1 and i are 

orthogonal (900 rotated). These two orthogonal axes 

define a two-dimensional (2D) plane, which is often 

referred to as the complex plane. Just as a real number 

can be placed on a number line, any complex number can 

be drawn on this complex plane. Several complex 

numbers on the complex plane are shown in the figure. 

The above discussion showed us some examples of 

complex numbers. To see the true nature of a complex number, as we did with other 

numbers, we have to apply basic arithmetic operators to them. That’s what we will do next.  

6.2 Functions with Complex (“Rotated”) Input and Output 

6.2.1 BASIC ARITHMETIC OPERATORS (FUNCTIONS) 

As with any other number, we can perform addition, subtraction, multiplication, and 

division with complex numbers. When we are doing addition, we have to add the real parts 

and imaginary parts separately. Why? Remember, a complex number like 5 + 3i represents 

two orthogonal directions: forwards and backwards (the real part), and “left” and “right” 

(the imaginary part). Since we're working with different directions, we have to add the two 

parts separately. Subtraction follows the same logic. For instance, 

 (5 + 3i) + (2 + 9i)  = 7 + 12i  [ addition of complex numbers ] 

 (5 + 3i) – (2 + 9i) = 3 – 6i  [ subtraction of complex numbers ] 

The following computer code shows how to add two complex numbers. To represent the 

two parts of a complex number, we use an array of two elements, with the 0th element 

representing the real part and the 1st element representing the imaginary part.  In function 

complexAdd, first we create a new two-element array to represent the result. Then we add 

real and imaginary parts separately, to produce the result. That’s it. As an aside, if you are a 

programmer, you will notice that it is more elegant to create a structure or a class to 

represent a complex number than a two-element array. 
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When we multiply two complex numbers, we use the distributive property, as we saw in 

multiplying (1+ i) by (1+ i). Thus, 

(5 + 2i) ∗ (3 - i) = 5(3 - i) + 2i(3 - i)  [ multiplication of complex numbers ] 

    = 15 – 5i + 6i - 2i2   

    = 17 + i  

How do we divide two complex numbers? Since we don’t know how to divide by a number 

with 2 parts, we use a special trick to make the denominator only one part (i.e., real). For 

instance, if we have (5 + 3i)/(1+ i), we can multiply both the numerator and denominator 

by (1− i). Since (1+ i)(1−i) = 2, we can readily divide any complex number by the real 

number, 2. In the above example, 1−i is called the conjugate of 1+ i. In order to find the 

conjugate of a complex number, you just flip the sign of the imaginary part. 

Can you explain why multiplying a complex number by its 

conjugate always leads to a real number? Algebraically, 

a + bi and a − bi are conjugates, because: 

 

 (a + bi) ∗ (a – bi) = a2 + b2 

 

The result is a real number — no imaginary part. There is 

an intuitive way to explain this as well. The angle that 1+ i 

and 1− i make with the real axis is the same except 1− i 

makes a negative angle (-450) while 1+ i makes a positive angle (450).  Therefore, if we 

multiply 1+ i by 1- i, you can view this operation as rotating 1+ i by -450 (or rotating 1− i by 

+450). The result is a number with a rotation of 00, which is a real number. In general, if we 

function complexAdd( x, y )   // x=a+bi  y=c+di 
{ 
 result = new Array[2]  // create new complex number 

 result[0] = x[0] + y[0]  // add real parts (a+c) 

 result[1] = x[1] + y[1]  // add imaginary parts (b+d) 

 return result 
} 

num1 = [5, 3]    // 5 + 3i  

num2 = [7,-1]    // 7 - i 

result = complexAdd( num1, num2 ) // add up two numbers 
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have a complex number a + bi, its conjugate is a − bi because a − bi makes the same angle as 

a + bi but in the opposite direction.  

 

 
Computer code for multiplying two complex numbers is shown below. Again, we calculate 

the real part of the output and imaginary part of the output separately. Can you modify this 

function to do complex division? (Hint: write two formulas for calculating the real and 

imaginary parts and notice that both get divided by the same real number.)  

 

  

6.2.2 COMPLEX MULTIPLICATION AS TWO OPERATIONS 

In Section 3.3.2, we saw multiplication of real numbers as a combination of two operations:  

(1) scaling (or amplification), and  

(2) reflection (rotation by 1800) 

As we saw in this section, multiplication by a complex number, generalizes operation (2) 

further. Essentially, complex multiplication performs two fundamental operations: 

(1) scaling (or amplification), and 

(2) rotation by any angle 

This should help you see complex numbers as a generalization of real numbers. To 

summarize, if one of the inputs to the multiplication operator (function) is 

▪ a complex number (z), then the other input is scaled by the magnitude of z and rotated 

by z’s angle  

function complexMult( x, y )    // x=a+bi  y=c+di 
{ 
 result = new Array[2] 

 result[0] = x[0]*y[0] – x[1]*y[1] // ac – bd  (real)  

 result[1] = x[0]*y[1] + x[1]*y[0] // ad + bc (imaginary) 

 return result 
} 
 
num1 = [5, 3]    // 5 + 3i  

num2 = [7,-1]    // 7 - i 

result = complexMult( num1, num2 ) // multiply two complex nums 

Conjugates a + bi and a − bi have the same magnitude but opposite rotation 
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▪ a negative number (x), then the other input is scaled by the magnitude of x and 

reflected (rotated by 1800)  

▪ a positive number (x), then the other input is scaled by the magnitude of x (no rotation 

at all) 

 

 
Squaring, and more generally exponentiation, is similar to multiplication. Exponentiation 

with an integer exponent can be thought of as repeated multiplication (that is, repeated 

rotation and repeated scaling). For instance, if we have, 

 (1+ i)5 

This does two things. First, exponentiation raises the magnitude of 1+ i, which is √2, to the 

power of 5 — i.e., (2)5/2. Second, exponentiation rotates the number 5 times. Remember 

that 1+ i has a rotation of 450. Repeated rotation done 5 times produces 450∗5 = 2250 of 

rotation relative to the positive real axis.   

What about fractional exponents? Let’s start with square-root. It is the inverse of squaring. 

For instance, if some complex number z is the square root of 1+ i, then z2 = 1+ i. This means 

that z should have half the rotation of 1+ i and the square-root of the magnitude of 1+ i. 

Other roots work in the same way.  

Now, it’s time to revisit our cannon puzzler. We can use a complex (“rotated”) number to 

represent any of the cannons in our puzzler. Not only that but we can use these “rotated” 

numbers to rotate the cannon by any angle in 2D, just by multiplying it with the 

appropriate complex number. 

Not only have we found a way to represent rotated objects in 2D, but we also found a way 

to rotate objects in 2D as we please.  

 

6.3 Complex Roots of Polynomials 

One place where complex numbers arise naturally is in the roots of polynomials. Recall that 

roots are solutions to the equation  f (x) = 0. Using roots, we can represent a polynomial as a 

product of its factors, which are linear functions. In Section 4.2.4.2, we saw that the root of 

each linear function is a root of the polynomial itself.  

We can represent rotated objects! We found a way to rotate objects! 

Complex multiplication is a generalization of scalar multiplication 
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We also learned about a theorem that gives us the number of roots in a polynomial: the 

Fundamental Theorem of Algebra. It states that an nth degree polynomial has n roots 

(including repeated roots), where each root can be real or complex.  

What does this mean? How can we get complex numbers as roots from a polynomial with 

real coefficients? Let’s look at a real-world example to understand what’s going on. 

Say you have a cube (like a Rubik’s cube). Say its volume is 8 units (this unit could be any 

cubic unit, like cubic-inches or cubic centimeters). We want to find the length of a side of 

this cube. How would we do that? If the length of side is x, we can model this relationship 

as, x3 = 8. In standard polynomial form, we can write this as: 

  f (x) = x3 – 8 = 0 

You can immediately see that 2 is a root of  f (x), because  f (2) is zero. Obviously, that means 

if a side is 2 units, the volume is 8 units. Are we done then? Not quite. The Fundamental 

Theorem of Algebra says that there are two other roots. Since x=2 is a root, (x − 2) is a 

factor. If you remember polynomial division, by dividing x3
 − 8 by (x − 2), we get x2 + 2x + 4. 

Thus, we can write: 

  f (x) = (x − 2)(x2 + 2x + 4) 

What are the roots of x2 + 2x + 4? Using the quadratic formula, we get: 

 x = -1 + √3i and  x = -1 − √3i 

As you can see, both of these roots are complex. But, what does it mean to have complex 

roots to our real-world problem? How can the side of a cube be -1 + √3i ? 

To start, let’s draw -1 + √3i. One thing you can immediately see 

is that its magnitude is 2. Using the Pythagorean theorem, the 

length squared is (-1)2+ (√3)2, which gives us a magnitude of 2. 

Now, that’s a good start. It has the same length (magnitude) as 

the real root. So, what’s the difference between the real root 

and -1 + √3i ? You guessed right: as our picture shows, it is 

rotated; it is rotated by 1200.  

We also know that, if we cubed this root, the result should be 8. 

Let’s do that. First, we square this root by multiplying it by 

itself. Thus, we do (-1 + √3i)( -1 + √3i). Remember what 

happens when we multiply: the output gets scaled (magnified) and rotated. When we 

multiply a number by -1 + √3i, it gets magnified by 2 and rotated by 1200. Since we 

multiply -1 + √3i by itself, we get another complex number that has a magnitude 4 and a 
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rotation of 2400. This complex number is -2 − 2√3i. If we multiply this by -1 + √3i to find the 

cube, we get 8. This is summarized below: 

 -1 + √3i   [ magnitude 2 and rotation 1200 ] 

 (-1 + √3i)2 = -2 − 2√3i [ magnitude 4 and rotation 2400 ] 

 (-1 + √3i)3 = 8  [ magnitude 8 and rotation 3600 (or 00) ] 

What in the world does this result mean? It means that whether we start with a side of 

length 2 or a side of -1 + √3i, we end up with a cube of volume 8 units. The same reasoning 

applies for the other root, -1 − √3i, which is rotated -1200. 

The original root said that the length of a side is 2. However, that was not the whole story. 

What if we had a side of length 2 that was rotated by 1200 to begin with? That side also 

leads to a cube with a volume of 8 units. If we considered only the real root, we are ignoring 

this fact. The complex roots reminded us of this fact. A cube with a side of 2 units and 

another cube with a side of -1 + √3i units are two different objects, if we were to consider 

their rotations. Both of these cubes have the same volume, but if we consider their rotation, 

they are two different objects. Therefore, all three roots represented three different cubes 

with a volume of 8 units. 

This example should make the real-world meaning of complex numbers crystal clear. Still 

you may object that you don’t really care about the rotation of a cube when you are only 

concerned about its volume. That’s fair. However, many problems will require you to take 

rotation into account. Remember what happened when we ignored the rotation of cannons 

in our puzzler? 

6.3.1 WHY DO THEY COME IN PAIRS? 

In the above example for  f (x) = x3 − 8, the complex roots came as a pair: -1 + √3i 

and -1 − √3i. As you can see, they are a conjugate pair. That is, one is rotated by 1200 and 

the other is rotated by -1200. This is not unique to this example. Complex roots always 

come in a conjugate pair. If you think a little bit, you should be able to explain this from 

what we know about complex numbers. Hint: what happens when you multiply a complex 

number by its conjugate? The result is a real number, because the rotations cancel out.  

A polynomial with real coefficients always has a real output when the input is real. That’s 

why you can always graph a polynomial with two real axes. However, we know that a 

polynomial is always equivalent to the product of its factors (linear functions). The factors 

have the same roots as the polynomial as we discussed in Section 4.2.4.2. So, assume that 

one of those factors has a complex root. What does this factor do? We know that 

multiplying by a complex factor results in rotation. Thus, if we multiplied by one complex 
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factor, the output is no longer real (it is rotated, so the output is complex, or rotated). For 

the output of the entire polynomial to be real, there has to be another factor that would 

“undo” the rotation done by the first factor. What would undo the rotation done by 

multiplying by a complex number? Its conjugate! 

As you can see, our intuition of complex numbers helped us understand a deeper fact about 

roots of polynomials. If you understood that, here is an easier problem. Can you prove that 

a polynomial of odd degree must have at least one real root? For instance,  f (x) = x3 – 8 had 

real root 2. Why would we always have a real root for a polynomial of an odd degree? 

That’s easy: it’s because complex roots come in pairs. For instance, a 5th degree polynomial 

can have a maximum of 4 complex roots (2 pairs). The remaining root cannot be complex, 

because complex roots have to come in pairs. Thus, there is at least one real root. 

As we saw in Section 4.2.4.2, the roots of a polynomial completely characterize that 

polynomial. That’s why roots are so important, in addition to roots being the solution to the 

polynomial equation  f (x) = 0. So, to recap, what does it mean for a function to have 

complex roots? It means that the solutions to the equation  f (x) = 0 can be rotated objects. 

Further, if an objected rotated by α degrees clockwise is a solution, another object rotated 

counter-clockwise by the same α degrees is also a solution. In other words, solutions to any 

real-world relationship modelled as a polynomial do not prefer clockwise rotation to 

counter-clockwise rotation. 

6.4 Graph of a Complex Function 

Graphs help us visualize functions. Using a graph, we can see how output changes when 

input changes. However, visualizing complex functions is tricky. 

As an example, let’s take the complex function  f (x) = x2 + 1, where x is a complex input. It’s 

a second degree polynomial, and hence, has two roots. However, f does not have real roots; 

its roots are given by x = ±√-1. In other words, the roots of  f (x) are: 

  x = i  and x = -i 

Consequently, we can write f as a product of its two linear factors: 

  f (x) = (x + i)(x − i) 

What does it really mean to have i or -i as a root? It means that if we use i or -i as an input, 

the output must be zero. We can easily visualize real roots with the graph of a function. The 

roots are x-values, where the function crosses the x-axis. But how on earth are we going to 

visualize a graph crossing at i and -i ? 
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In order to visualize imaginary roots, let’s try to graph this complex function. For a complex 

function, the input and the output are both complex. Thus, the input variable x is a complex 

variable, which has the form: 

 x = a + bi 

where both a and b are real numbers. Now, the output of a complex 

function is also complex. Let’s represent this using y, which we will 

represent as c + di, as shown in the Visual Model. As per its recipe, 

function f  just squares its input and adds one.  

The graph of f  is given below. Note that if we wanted to represent f 

with one graph, we would need a 4D graph. Have you ever drawn a 

4D graph? Me neither. Hence, we use two 3D graphs to show c and d separately. Remember, 

c and d taken together, as c + di, represent the complex output. Therefore, we show the real 

component (c) of the output with one graph and the imaginary component (d) of the output 

with the other graph. 

In order to draw the two graphs, let’s see how we obtain each 

component of the output. We know that: 

          y  = x2 + 1 

= (a + bi)2 + 1    [ since x = a + bi ] 

  = a2 + 2abi + (bi)2 + 1 

  = a2 + 2abi − b2 + 1  [ since (bi)2 = -b2 ] 

Separating real parts and imaginary parts, we get: 

 c = a2 – b2 + 1   [ real part ]    (1) 

 d = 2ab    [ imaginary part ]   (2) 

To summarize, a complex function accepts one complex number as its input and produces 

one complex number as its output. However, we can look at each complex number as a 

combination of two parts, real and imaginary. The second Visual Model summarizes these 

two relationships. Recall that a function cannot produce two outputs, but, we can model 

each output component as a separate function. That’s exactly what we do when we graph a 

complex function — we produce two graphs, one for each output component. 

Note that the graphs show only the 1st quadrant (i.e., when both a and b are positive). For 

any given input values a and b, you can read the real output, c, from the left graph and the 

imaginary output, d, from the right graph. 
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To start with, what’s the output when the input is zero —i.e., when both a and b are 0? 

From the left graph, we get c=1; from the right graph, we get d=0. This is expected 

because  f (0) = 1.  

 
 
Now, let’s look at the real component, c, of the output, from the left graph. The real 

component, c depends on both a and b. In order to provide purely real inputs, if we keep b 

at 0 and increase a, the output value c rises sharply (output is the square of input).  

To provide purely imaginary input, let's keep a at zero this time and change b. As we 

increase b, c falls sharply. When b=1 (i.e., x = i) , the real component of output, c, is zero.  

How about the imaginary component, d, of the output? From the graph on the right, we can 

see that along the axis labeled b, the output d is zero. Therefore, at x=i, both c and d are 

zero, which makes x=i a root of the function  f (x). Whoa! We found a root! In other words, if 

we use i as the input to function  f (x), the output of the function is zero. This is what we 

mean when we say a function has a non-real root.   

Take a moment to study both graphs carefully. As a quick exercise, can you explain how to 

find the output value for input 1+2i using the two graphs? For input value 1+2i, both the 

real and imaginary components of the output are nonzero.  

If we wanted to automate finding output, we could use the computer code given below. It 

calculates the real and imaginary parts of the output using two separate functions. We can 

produce output values for any input using this code to plot the two graphs we saw above.  
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6.5 Complex Numbers as “Complete” Numbers 

At first glance, you may think that complex numbers are rather bizarre. You may think that 

real numbers are more “real” than complex numbers. That’s not the case.  

What’s the use of numbers? Numbers are used to represent real world objects. Real 

numbers are inadequate for doing that. That’s what we saw with our cannon puzzler. That’s 

what we see algebraically with √-1. Real numbers are only half of the story. Initially, we 

thought that whole numbers were enough to represent real-world objects. We found out 

that was not the case. Then, we thought that real numbers were sufficient. Again, we were 

proven wrong. Complex numbers are the “real deal”. That’s because they can represent 

more objects in the real world than so-called real numbers. In other words, complex 

numbers are a more powerful abstraction than real numbers. At the same time, when we 

apply basic algebraic operations to complex numbers, the result is always a complex 

number (which includes both real and imaginary numbers). Therefore, complex-numbers 

are “complete”. 

In many real-world situations, we can ignore the rotation of objects. You don’t need to 

consider the rotation of apples when you count how many you ate.  However, there are 

many other situations where rotation is a natural behavior. For example, think about a 

motor or a generator. By their very nature, they rotate. To model such objects and the 

properties associated with them, we need complex numbers. 

Let’s look at a concrete example from electrical engineering. Earlier, we looked at the 

relationship between voltage and current, when current is flowing through a resistor. To 

model this, we use the formula V = IR, which is called the Ohm’s Law. Electrical circuits 

have two other types of elements that offer “resistance” to the flow of current. One is an 

function real_out( real_in, imag_in )  
{ 
 result = real_in * real_in – imag_in*imag_in + 1 

 return result 
} 

function imag_out( real_in, imag_in )  
{ 
 result = 2 * real_in * imag_in 

 return result 
} 
 
c = real_out( 1, 2 ) // calculate real part of output 

d = imag_out( 1, 2 ) // calculate imaginary part of output 
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inductor, or a coil of wire as you often find in motors, that stores energy in a magnetic field. 

The other is a capacitor, which acts as a “reservoir” that stores electrical charge. Both 

inductors and capacitors offer a form of “resistance” to the flow of current. This resistance 

is known as “impedance”, as in you impede someone’s progress — in this case, inductors 

and capacitors “impede” the flow of current. However, impedance applies only to change of 

current flow. For instance, if the same amount of current flows through a wire 

continuously, the current will not see any impedance due to an inductor. However, once the 

current starts changing, the current will experience an “impedance” which affects the 

amount of current that can flow. As an example, if the current changes as a sine wave, an 

inductor will “impede” its flow. This impedance through an inductor is modelled using a 

modified version of Ohm’s law: 

 Voltage = Impedance ∗ Current 

Which is similar to  

Voltage = Resistance ∗ Current  

Now, you may wonder, why we are so interested in sine waves. If you understood the 

Fourier series in Section 5.4, you already know the answer. We can represent any 

waveform as a series (a linear combination) of sine waves. That’s why we are so interested 

in sine waves. If we know how an electrical component reacts to sine waves, we can figure 

out how it reacts to any waveform. 

As we saw in Chapter 4, a general sine wave has an amplitude, frequency, and a phase shift. 

Remember the Ferris wheel example from Section 4.6 on trigonometric functions? If the 

Ferris wheel with radius of 1 unit rotates 2 times a second, its frequency, f, is 2 (angular 

frequency, ω, is 4π). And if your friend sits a quarter circle ahead of you, she has a phase 

shift of 900 with respect to you. That is, she “leads” you by 900, or you “lag” her by 900. So, 

at a given time t, your height (from the hub of the Ferris wheel as we did in Section 4.6) can 

be represented with sin(4π t), and your friend’s height can be represented with sin(4πt + 

π/2). If your mom sits on a Ferris wheel that has a diameter three times as large as yours, 

but she sits at the same angle as your friend, her height is given by 3sin(4πt + π/2).  

For a sine wave with an angular frequency of ω, the impedance of an inductor (i.e., a coil of 

wire) with an impedance L is given by: 

 impedance = jωL 

Note that in electrical engineering, we often use the letter j instead of i to represent an 

imaginary number, because i represents instantaneous current. Remember, it doesn’t 

matter what letter we use to represent the imaginary unit. It still does the same thing. 
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What does jωL mean? First of all, the inductance, L, is just a scalar value. The larger the coil, 

the larger the value of L. It is analogous to the value of resistance. It’s just how big the 

inductance is. The larger the inductance, the larger the impedance. 

Second, the impedance depends on the frequency of the sine wave. If we double the 

frequency of the sine wave (if the Ferris wheel goes 2 times as fast), the impedance 

doubles.  If the frequency is zero (i.e., for direct current), the inductor appears as a short 

circuit, without offering any impedance to the flow of direct current. Note that this is not 

the case with a resistor. The resistance does not depend on the frequency of current. 

Third, and most importantly, we have a j stuck in front of ωL. What does that mean? It 

means that the impedance, unlike resistance, is a complex (rotated) object. What does it do 

exactly? Well, if we represent a sine wave pictorially as an unrotated arrow (pointing along 

the real axis), a sine wave that “leads” by 900 can be represented by another arrow with a 

rotated by 900 counter-clockwise, as shown below. These diagrams are referred to as 

phasor diagrams, because they show the relative phase difference between input and 

output sine waves. 

 

You can also visualize this using our Ferris wheel model, which we use to represent a sine 

wave. If we have a rotating Ferris wheel representing the input sine wave (current), the 

output is another Ferris wheel, rotating 900 ahead, representing voltage. That is, the output 

is “leading” the input by 900. That is, if you were sitting at the 2 O’clock position on the 

input Ferris wheel, on the output Ferris wheel, you would be at 11 O’clock position.  

Why does an inductor, which is just a coil of wire, do this? It’s because when current starts 

increasing through an inductor, a magnetic field starts building up, resisting (or rather, 

impeding) the flow of current. For a pure resistor, there is no such magnetic field, and 

hence does not produce any phase shift in output.  
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In contrast, the impedance of a capacitor is modeled as 1/jωC, where C is the capacitance, 

which represents how much “capacity” there is to store current. C is just a scalar value. As 

capacitance increases, the impedance drops. That is, if we have a larger “reservoir”, it can 

pump (and sink) more current. In a capacitor, as frequency increases, the impedance drops, 

which is why ω is in the denominator. If the frequency is zero (i.e., for direct current), the 

impedance is infinite, and the capacitor appears as an “open circuit”, where current cannot 

pass through. Note that 1/j is same as -j, as you can see easily by multiplying both the 

denominator and numerator by j. Thus, the capacitor rotates its input current by −900, to 

produce the output voltage, as shown below. In other words, it causes the voltage to lag 900 

behind the current. Can you visualize this using our Ferris wheel analogy? 

 

Again, why did we look at all this? Well, I wanted to show you a typical practical use of 

complex numbers. Complex numbers can be used to build models that perform rotation. 

Electrical circuits are built using resistors, capacitors, and inductors. As such, complex 

numbers are an absolutely essential tool if you want to analyze electrical circuits. 

6.6 Non-real Exponents (Advanced Topic) 

This section covers an advanced topic. You may skip this section but this section shows you 

the real power of complex numbers and why they are a fundamental tool in many 

disciplines of engineering.   

When we talked about exponentiation above, we limited the discussion to real exponents. 

However, one of the most useful and surprising functions arise when we use imaginary or 

complex exponents. So, let’s take a look. 
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6.6.1 EXPONENTIATION WITH AN IMAGINARY INPUT 

As you may remember, we looked at the (natural) exponential function 

e 
x, in Section 4.3.1. What if the input to the exponential model (i.e., the 

exponent) is imaginary? You could represent such an exponential 

function as: 

  f (x) = e 
ix 

where x is a real number (so ix is an imaginary number). What in the 

world does this mean? Well, when the exponent is an integer (say n), we multiply the base e 

by itself n times. But how do we multiply e by itself ix times? We have no clue how to do 

that.  

Fortunately, we have another definition of e 
x. In Section 5.3, we expressed e 

x as an infinite 

series of powers of x (called a power series). Recall that this series is like a polynomial with 

an infinite number of terms, where the terms get smaller and smaller as we go on. That 

power series expansion of e 
x is shown below: 

𝑒𝑥 = 1 +  
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ 

We use this power series to calculate ex (e.g. e 
2.305), especially when x is a fraction. 

However, the above series is for a real exponent. So, instead of x, let’s substitute ix, to find 

e 
ix as: 

𝑒𝑖𝑥 = 1 +  
𝑖𝑥

1!
+

(𝑖𝑥)2

2!
+

(𝑖𝑥)3

3!
+

(𝑖𝑥)4

4!
+ ⋯ 

Note that the numerator (top part) of term n is (ix)n, 

which is inxn. We have already seen in before. Remember 

the rotating unit circle? It is shown again here to refresh 

your memory.  

Now, let’s look at the sum of this series. There are two 

ways to look at this. The first way is pictorially, as shown 

below. Let’s start at zero and keep on adding each term 

of e 
ix. First, we add the 0th term, which is 1. Then, we add 

the 1st term, ix/1!, to it. Then, we add the 2nd term, (ix)2/2!, to it. Note that (ix)2 is -1x, 

because i2 = -1. Therefore, the 2nd term is -x/2! = -x/2. Similarly, the numerator of the 3rd 
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term is (ix)3, which is equal to -ix, if we substitute -1 for i2. As you can see, each new term is 

900 rotated from the previous term.   

 

What about the magnitude of each term? As we already know, the numerator of each term 

is a power function, while the denominator is a factorial function. We know that the 

factorial function grows much faster than the power function. Thus, as n increases, the 

denominator becomes much larger than the numerator, making the magnitude of each 

term smaller and smaller, really fast.  Effectively, we are adding ever diminishing rotating 

terms to create some sort of a “spiral”. The figure above shows how we can obtain the value 

for e 
ix when x=2 (i.e., e 

2i
 ), using this method. Each arrow shows each term, starting at O.  

Now, let’s look at the end point of this “spiral”. Here is the real shocker. The real value of 

this point is cosine of x and the imaginary value of this point is sine of x. For instance, when 

x=2, the real value gives cos(2) and imaginary value gives sin(2).  

To understand why, let’s look at this in the algebraic form. Let’s start with the power series 

expansion of e 
ix, with -1 substituted for i2 whenever possible. That series is shown below.   

𝑒𝑖𝑥 = 1 +  
𝑖𝑥

1!
−

𝑥2

2!
−

𝑖𝑥3

3!
+

𝑥4

4!
+

𝑖𝑥5

5!
−

𝑥6

6!
+ ⋯ 

Now, let’s group the terms of e 
ix, so that all real (blue) terms are together and imaginary 

(green) terms are grouped together, as shown below. Further, from the imaginary terms, 

let’s factor out i, because i is common. Do you see what we get? All of the real (blue) terms 

constitute the power series expansion of the cosine function, as we saw in Section 5.3. 

Similarly, all the imaginary (green) terms constitute the power series expansion of the sine 

function as we saw in Section 5.3! 
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This is a really fascinating and hugely important result. This is one of the benefits of 

studying the power series: to see how everything is connected. With power series, we 

looked at functions as an infinite series (sum) of terms. This helps us see the connection 

between functions of complex variables (e 
ix) and functions of real variables, cos(x) and 

sin(x). In other words, a function of a complex variable can represent two functions of real 

variables. This shows us the power of complex numbers and why we study them. 

The result we obtained above is called the Euler’s Formula, or the Euler’s Identity. It can 

be expressed as: 

e 
ix = cos(x) + i sin(x) 

Let’s take a moment to appreciate what this identity is saying.  

It says that e 
ix can simultaneously represent two functions — one sine function and one 

cosine function! Let’s further visualize this with the aid of our Ferris wheel analogy. This 

says that with e 
ix, we can simultaneously model your height and your horizontal distance on 

the Ferris wheel using one function. In other words, e 
ix completely models your position on 

the Ferris wheel. For a given value of x, the function e 
ix gives your exact position (both 

horizontal and vertical) on the Ferris wheel. As x varies, e 
ix completely describes your 

rotation (in a circle). Notice that x is real, so if we use x to represent time, e 
ix models your 

position on the Ferris wheel as time goes on. 
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Notice that the right-hand side of the Euler’s Identity consists 

of a real part and a imaginary part, just like a complex number, 

a + bi. Consequently, we can look at e 
ix as a complex number 

that makes an angle x with the real axis, as shown in the figure. 

It can simultaneously represent both the sine value of x and 

cosine value of x. As x varies, e 
ix traverses a circle of radius 1. 

Instead of a radius of 1, if we have a radius of r, then re 
ix, can 

represent any complex number with a magnitude of r and an angle of x. This is known as 

the polar representation of a complex number, giving us the identity: 

 a + bi = r e 
ix   where   a = r cos(x)  and  b = r sin(x) 

You may ask what the big deal with e 
ix is, since the sine and cosine functions could do the 

same. True, but not completely. A sine or cosine function is only half as good as e 
ix. For a 

given value of x, the sine function can describe only your vertical position (height) on the 

Ferris wheel. Similarly, the cosine function can describe only your horizontal position. The 

function e 
ix is twice as useful as sine or cosine alone. It can model both your vertical and 

horizontal position simultaneously, as you rotate on the Ferris wheel. Because of this, we 

often use e 
ix to model rotation and to represent sine and cosine functions. 

For instance, to model rotation with angular frequency ω and amplitude A, we can just use 

Ae 
iωt, where t is the input variable representing time. Both ω and A are constants. The 

function Ae 
iωt represents both Asin(ωt) and Acos(ωt) functions. Here is a simple example. 

In Section 6.5, in our phasor diagram, we used line segments to pictorially depict an input 

wave and an output wave. Now, we have a full-fledged function that can represent a sine or 

cosine wave. At any given point in time, t, we can represent the relationship between 

current through an inductor and voltage across it as: 
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Let’s look at the above statement closely with our Ferris wheel analogy. The above says 

that if we use a Ferris wheel with a diameter A, rotating at an angular frequency ω, we will 

get an output Ferris wheel rotating at the same frequency ω, but with a different diameter 

(AωL) and rotating 900 ahead. If you think in terms of sine or cosine waves, it describes the 

same relationships. If we have an input sine wave with angular frequency ω and amplitude 

A, we will get an output sine wave with amplitude multiplied by AωL and phase shift of 

900. 

Due to the versatility of e 
iωt in representing rotation, it shows up in many electrical 

engineering and signal processing applications. For instance, you will find e 
iωt in Fourier 

Transforms.  

6.6.2 EXPONENTIATION WITH A COMPLEX INPUT 

Instead of having just an imaginary value in the exponent, what if we had a whole complex 

number? We can represent such a function as e 
st, where s is the complex number a + bi as 

shown below: 

e st = e 
(a + bi) t  

 = e 
(at + ibt)  

= e 
at ∗ e 

ibt  [ adding exponents is multiplication: e.g. e 
a+b = e 

a ∗ e 
b ] 

=  A e 
ibt, where A = e 

at 

What does this mean? Well, we have a product of two functions. The first, e at is the familiar 

natural exponential function similar to ex. The second, e 
ibt, is similar to e 

ix, representing 

rotation (a Ferris wheel). Note that both a and b are constants, but the expressions at and bt 
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are variables because t is the input variable. Let’s take the case where a is negative. Then, 

e 
at is the exponential decay function, which acts as the amplitude A for the waveform e 

ibt. 

Since e 
at depends on time, the amplitude A changes with time — in fact, A decays 

exponentially as time goes by. Thus, when a is negative, e 
st represents a Ferris wheel, 

whose radius decreases rapidly (exponentially) as time goes by. In other words, e 
st models 

a spiral whose radius is decreasing exponentially. The constant a decides how fast the 

output decays. The graph of this Ferris wheel with an exponentially decreasing radius is 

shown on the left below, while the graph of the real component (i.e., horizontal distance to 

the hub) is shown on the right. For these graphs, we have picked the values a=-0.1 and b=1. 

 

As you can see from the graph on the left, the radius of the Ferris wheel starts at 1. Thus, 

the point (1, 0) on the right is the starting point at t=0. As time goes by, the radius 

decreases exponentially, finally approaching zero. Remember, in this example a is negative. 

If a is positive, instead of the rapid decay, we would get rapid (exponential) growth of 

amplitude. 

The graph on the right shows the real component of the Ferris wheel (i.e., the horizontal 

distance from the hub). It shows a cosine waveform whose amplitude is decaying 

exponentially. Therefore, if we were to look at the real component of e st, we would get an 

exponentially decaying cosine wave. Similarly, if we considered the imaginary component 

of e st, we would get an exponentially decaying sine wave.  

You may wonder why we went into all this trouble to build this exponential model with a 

complex variable as input. The reason is the real-world importance of this model. Have you 

ever played a key on a piano or any other musical instrument and observed how the sound 

dies down as time goes by? This is the model representing that. As you can see, this model 

captures both sine and cosine waves that dies down (dampens) as time goes by. This 

model, e st, is more general and is closer to nature than the model e it, because the model e st 

captures this natural dampening effect. Imagine a world where when you pluck a string of a 
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guitar, the sound never dies down. That would be a totally different world from what we 

live in. 

Therefore, not surprisingly, this e st model is used in many branches of science and 

engineering. For instance, you will meet this model in a really useful tool called Laplace 

Transforms, which allows you to express any waveform as a combination of decaying sine 

waves. Compare this with Fourier Transforms, where any waveform is expressed as a 

combination of non-decaying sine waves. Therefore, Fourier Transforms are a special case 

of Laplace Transforms with a=0.  

Isn’t it truly fascinating how complex numbers are at the heart of representing such a rich 

set of mathematical models? Don’t forget that fact next time you ride a Ferris wheel, which 

of course, won’t have a decaying radius.  

6.7 The Story So Far 

In the previous chapters, we looked at members of the function dynasty, how they came 

into existence, their common properties, their common problems, and the objects they 

consume and produce. We also looked at the common models, and how an infinite series of 

simpler functions can model more sophisticated functions. In this chapter, we revisited 

objects that functions consume and produce, because functions showed us that real 

numbers are just half of the story. 

Functions, in particular square root, showed that it could produce a new kind of output that 

is not a real number, even when using real numbers as input. These new numbers 

represent objects with a direction in 2D. That made us realize that any function can accept 

these “rotated” objects. In particular, we saw multiplication with a complex input 

performing rotation. We also found some of the “missing” roots of polynomials — they 

were just hiding from us because they were rotated, and earlier we did not have the 

capability to see rotated objects. That is, earlier, we did not use complex numbers as inputs 

to functions.  

In Section 4.3, with real numbers as exponents, we saw that the exponential function 

produces rapid growth or decay.  When using complex numbers as input, the same 

exponential function could play an additional role: it could produce a rotating output, 

representing both a sine and a cosine function at the same time, with constant, decaying, or 

growing amplitude.  

A carpenter who has access to plywood or manufactured wood can produce a usable chest. 

But the same carpenter, given mahogany or ebony, can produce a chest that could become a 

masterpiece. Similarly, complex numbers representing rotated objects give the same old 
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functions the capability to produce much richer output. We saw how the functions and the 

objects they consume enhance each other’s value.  

We also saw that these rotated objects and functions that use and produce them are not a 

mere mathematical curiosity. They are a fundamental tool used in several engineering 

disciplines, especially in electrical engineering, due to their ability to represent waveforms 

and models of electrical components.  

In the next chapter, we will see how functions can consume and produce even richer 

objects.  
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7 FUNCTIONS IN 3D SPACE 

Chapter Overview: This chapter extends our journey of representing richer objects (and 

operators) to vectors, which can represent 3-dimensional or higher dimensional objects. 

First, we will look at vectors as a geometric concept and then as an algebraic concept, 

finally uniting them using the concept of a linear combination. In the process, we will look 

at new operators like the dot-product and the cross-product and richer relationships 

(functions) like scalar fields and vector fields that are indispensable in modeling the real 

world.  

7.1 Vectors: Representing Objects in Space 

If you asked me how to get to the nearest gas station, and if I replied “3 miles”, you would, 

understandably, be baffled. Your very next question would be, “3 miles in which direction?” 

Now, if I said, “exactly 3 miles north from here”, you should be able to find the gas station. 

The number “3 miles” is plainly insufficient to represent the relationship between where 

you are and the location of the gas station.  

In Chapter 3, we saw that whole numbers are sufficient to represent how many apples one 

has, but insufficient to represent half an apple. We needed fractions and real numbers for 

that. Then, we saw how real numbers could not represent objects that are pointing in 

different directions on a two-dimensional (2D) plane. That led to complex numbers. Is that 

all the objects we want to represent?  

As an example, if you see an airplane flying in the sky, how would you describe its position 

relative to where you are? The airplane may be flying one mile high, two miles east from 

where you are and a half a mile north of where you are.  A whole or a real number can’t 

represent that. Neither can a complex number. 
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Therefore, we need a new mathematical object that can represent the position of an object 

in space. We can call such an object, a vector. Note that, just like any other number, a 

vector is a representation, or an abstraction.  

A vector can be geometrically represented as a directed line segment. That is, a line 

segment with an arrow at the tip, which points in the direction we want. The length of the 

line segment represents the magnitude of the vector. From the figure above, you can see 

how the vector (arrow in figure) can represent the relationship between your position and 

the position of the airplane. In other words, a vector can represent a relationship between 

two objects in three-dimensional (3D) space.  

Note that a real number cannot express the above relationship. A real number can tell the 

distance between the two objects but cannot represent the relative direction. A complex 

number cannot represent directions in 3D space. If we had the objects on a 2D plane, a 

complex number could represent the relative position of one with respect to the other.  

Note that for this chapter, we consider 3D space by default, and hence, our vectors are 3D. 

However, vectors can represent objects in 2D, 3D, or higher dimensions. As for 

terminology, real numbers that we dealt with so far are called scalars, because they cannot 

represent a direction. 

7.2 Where do Babies, err…, Vectors, Come From? 

A number can represent the difference between two situations (states). For instance, when 

you have 3 apples, you compare it with a situation where you do not have any apples. The 

difference between those two situations is represented by number 3. Fundamentally, a 

number arises from a comparison, or a difference, between two states. So do vectors. They 

arise by comparing (finding difference between) two positions in space. 

Imagine you lived in the fairytale land, as shown in the figure below. Your house is at the 

bottom left corner of the map, at point O. You can draw a bunch of vectors connecting 

places on the map. For instance, vector OP gives both the distance and direction to Mother 

Goose’s Pond from your house, and vector PD gives the distance and direction to Wolf’s 

Den from Mother Goose’s Pond. As you can see, a given vector represents the difference 

between two places on the map. When we represent a vector by a line segment (e.g., OP), 

the first letter (e.g., O) refers to the starting position and second letter (P) specifies the end 

position. It’s just a way to give each vector a name. We always represent a vector with 

boldface to indicate that it is a vector quantity with both a magnitude and a direction (as 

opposed to scalars). 

If you draw all of the vectors from your house (point O) to all other places, that would be 

sufficient to define all the places on the map. Why? Well, because, when you specify vector 
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OD (your house to Wolf’s Den) and OP (Your house to Pond), that determines vector PD 

(Pond to Den) as well.    

 

 

7.3 Vector Difference (Subtraction)   

Relative to your house, vector OC represents the Witch’s castle, and vector OD represents 

the Wolf’s Den. So, what’s the difference between those two places? From the map, it’s 

vector DC, the path from Wolf’s Den to the Witch’s Castle. We can write this difference as: 

OC – OD = DC 

There is another way to look at this. Imagine you start at your house (O) and your final 

destination is the Witch’s Castle (C). However, first you walk along path OD to Wolf’s Den 

(D). Now, you are at a halfway point. What’s the remainder of your journey? The remaining 

section is given by DC, which is given by the difference between your final destination and 

the halfway point, D.  Notice that when you find the scalar difference 5 – 3, it means the 

same thing. If you already have 3 apples, how many more do you need to get to 5 apples? 

The answer is 2, which is the difference between the two numbers. Similarly, if you are 

already at point D, how far do you need to travel to get to your final destination C? That 

difference is given by vector DC.  

This is an absolutely important concept to grasp.  
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7.4 Vector Addition   

Vector addition can be easily understood with our map as well. Let’s start at your home. 

First, if you travel along vector OP to the Pond, and then go along vector PD to the Den, 

what’s the final destination? It is D, which is represented by vector OD. It is same as going 

from your home to the Den directly, along vector OD. We can represent this as: 

 OP + PD = OD      (1) 

This is called the “triangle rule” for vector addition. From the 

map, you can see that vectors OP, PD, and OD are sides of a 

triangle. The triangle rule can help you with vector difference as 

well: if you subtracted OP from both sides of equation (1), you 

get: 

PD = OD – OP  

This is a vector difference. Can you explain this vector difference 

using our map? You should be able to notice how vector 

difference and addition are related. Take vector OP. If we add it to PD, you get OD. If we 

subtract it from OD, you get PD.  

What if we wanted to add OC and OD together? In (1), PD 

started where OP ended (at point P), so we could add them 

easily. In that case, the tip of one vector was connected to the 

tail of the next vector. However, if you wanted to add OC and 

OD together, we have two options. Option 1 is to move OC so 

that OC starts where OD ends, as shown in the figure. Option 

2 is to move OD so that OD starts where OC ends. Can you 

draw that diagram and verify that both options produce the 

same result? 

This demonstrates one very important aspect about a vector. 

A vector represents a length and a direction. That’s it. You can “ground” it anywhere you 

want. There is no fixed starting position. In other words, a vector represents a difference 

between the positions of two objects. Therefore, it can represent the difference between 

any pair of objects that has the same difference.  

 
 

Let’s take our scalar example again. We know that the difference between 5 and 3 is 2. The 

number 2 represents a difference. It doesn’t always have to be between 5 and 3. The 

You can “ground” a vector anywhere 
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number 2 can represent the same difference between 12 and 10. Vector subtraction works 

in the same way with one caveat: vector difference represents both a magnitude (length) 

and a direction, whereas scalar difference represents only a magnitude. Other than that, 

both scalars and vectors can represent difference between any two objects.  

As a result, when applying the “triangle rule” for vector addition, 

we are free to move any vector as we please. The same procedure 

applies to finding the difference between two vectors that do not 

have a point in common. For instance, if we had to find OC – DG, we 

can move point D to coincide with O to calculate the vector 

difference.  

7.5 Multiplication by a Scalar (Scaling) 

On our fairytale land map, when you start from your house, the Grandma’s house is in the 

same direction as the Wolf’s Den. Isn’t that that the reason why you can’t visit grandma 

without the wolf finding out about it? 

If we represent Grandma’s house by vector OG and Wolf’s Den by vector OD, we can 

represent OG as a scalar multiple of OD, as: 

       OG = 2.2 ∗ OD 

Here is what this means: if you have to go some distance to Wolf’s Den, if you go 2.2 times 

that distance in the same direction, then you will end up at Grandma’s. As you can see, 

scalar multiplication just makes the length (magnitude) of a vector larger or smaller 

without changing its direction.  

7.6 Examples of Vector Addition and Subtraction 

It was fun to see how you can find your way around in the fairytale land using vectors. 

However, unfortunately, we don’t live in the fairytale land. Why do we need vectors in the 

real world? To understand the serious uses of vectors, you have to wait a little bit more, but 

for now, here is a very simple use. Say you are flying an airplane at 300 kilometers per 

hour. You want to go straight east. However, there is a wind blowing due north 50 

kilometers per hour. In which direction should you point the airplane? Further, after one 

hour, what is your position with respect the position your started at?  
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The above picture shows the vectors corresponding to this problem. If we want to end up 

at the right place, we have to travel along the blue arrow, because the wind is going to push 

us north. For instance, if we travel for one hour, the wind is going to take us 50 km north.  

From the diagram, you see that sin(α) = 50/300 = 1/6. Thus, α = 9.60. So, we have to travel 

9.60 degrees clockwise from the east direction, to end up east. To find out where we would 

end up, we have to add the blue arrow and the green arrow together, resulting in the 

orange arrow. You can find the magnitude of the orange arrow using the Pythagorean 

theorem or trigonometry.   

Instead of the velocity of the wind, if we were given the velocity of the airplane (blue 

arrow) and where we would end up (i.e., the orange arrow), then we can find the velocity of 

the wind (green arrow) using vector subtraction. That is, we have to subtract the blue 

vector from the orange vector.  

Although vectors gave us insight into solving this problem, we had to resort to geometry 

(Pythagorean theorem) and trigonometry to find the actual magnitudes and angles of our 

flight path. We will address this deficiency soon, once we have an algebraic representation 

of vectors.  

Vectors are used in navigation, both in air and on sea. Notice that we had to resort to 

vectors because the underlying physical quantities have directions. The velocity of the 

airplane and the wind need vectors. I made the above example easier by making it a 2D 

problem. In practice, this is a 3D problem where the wind could be blowing in any direction 

in 3D space. That’s where vector algebra is really going to shine. 

Another example of vector difference is shown in the figure. Here, 

we have an object rotating in a circle and we want to find its 

velocity (both magnitude and direction). Assume that at time t=0, 

the object is at point P. Therefore, vector OP represents the 

object’s position at time t=0, with respect to O. After 1 second, the 

object is at Q. Therefore, the vector OQ represents the object’s 

position at time t=1. Now, we want to find the velocity of the 

object. The average velocity of an object is the displacement divided by the time duration it 
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took to travel that distance. What’s displacement? Displacement is the vector difference 

between two positions. In fact, in our fairytale land, all of the vectors we calculated were 

displacements. So, what’s the vector difference between OQ and OP? It’s the vector PQ, 

which is shown by the red arrow in our diagram. Thus, within one second, we had a 

displacement shown by the red arrow. Since displacement divided by the time duration (1 

second in this case) is the average velocity, the red arrow also represents the average 

velocity in this case. Notice the direction of this velocity. It is “fairly close” to the direction 

of the tangent at point P. In fact, if we found the velocity when Q was extremely close to P, 

the direction of that velocity would be same as the direction of tangent at point P.  That’s 

called the instantaneous velocity at P. 

You can observe this in practice quite easily. If you tie a rock at one end of a string, hold it 

from the other end and swing the rock in a circle above your head, the rock will go in a 

circle similar to the one shown in the figure above. At some point in time, the rock will be at 

point P and you will be holding the other end of the string at point O. If you suddenly let go 

of the string, where would the rock go? Usually, through a neighbor’s window!  

Seriously, though, the rock, or any other moving object for that matter, travels in the 

direction of its velocity. In other words, the rock will travel along a line tangent to point P, 

assuming you release the string when the rock is at point P. The same thing happens when 

a car skids off the road while taking a sharp turn. If the car is travelling along the circle 

given in the above figure, and if it suddenly skids at point P, it would travel on the line 

tangent to point P, and end up in a ditch.  

This example shows how vector representation and vector difference can illuminate real 

world observations we make.   

7.7 Vector Functions You Meet Every Day 

The same way functions accept scalars as inputs and produce scalars as outputs, functions 

can accept vectors as inputs and produce vectors as outputs. One obvious example is 

reflection. Reflection is a function, as we saw in Section 1.4. It can accept a vector as its 

input. The output is the reflected vector. The function “reflect” and its Visual Model are 

given below. Notice that we are representing a vector with a single bold letter below, 

instead of two letters we used above for line segments. Again, it’s just a way of naming. 
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In textual form, we can write this function as: 

 w = reflect(v) 

where v is the input vector and w is the output vector. 

Similarly, projection is a function. It projects a vector onto a plane. In the following figure, 

we project the input vector v onto a vertical plane, producing the output vector w. The 

Visual Model for the projection function is also shown.  

 

 
In textual form, we can write the “project” function similar to the “reflect” function, using 

the input vector v and the output vector w, as follows: 

 w = project(v) 

As a practical example, notice that your shadow is created by a projection.  As another 

example, the vector version of Newton’s second law of motion,  

F = m a,  

represents a function between two vectors, where the input vector a is simply multiplied 

by a scalar, m, to produce the vector output F. Every time you move an object, you are 
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applying this law. The vector function captures that acceleration a and Force F have the 

same direction.  If you push a lawnmower eastward, it goes eastwards. Duh! 

7.8 Product Between Two Vectors 

In Section 7.5, we looked at multiplying a vector by a scalar, to make the vector larger or 

smaller. There are two other types of products defined between vectors. Remember that a 

product is a function (an operator). We define a function to model some real-world 

relationship. So, with these two products, we define new functions (operators) to model 

some relationships that are useful to us. 

7.8.1 DOT PRODUCT (SCALAR PRODUCT) 

The first product we define is called the dot product, or scalar product, between two 

vectors. The dot product between vectors u and v is denoted by u · v. It is defined as the 

product of the magnitudes (lengths) of the two vectors multiplied by the cosine of the angle 

between them. Why do we define it like this? In order to answer that question, let’s look at 

what this definition actually says.  

 u · v  = ‖u‖ ‖v‖ cos(α) 

where ‖u‖ represents the magnitude (length) of vector u. Since the product is between 

magnitudes, which are scalars, and the cosine of the angle is also a scalar, the output of the 

dot product operation is a scalar, not a vector.  

 

The figure above shows vectors u and v, and the angle α between them. It also shows the 

Visual Model of the dot product. Again, remember that output of u · v is a scalar, s. Hence, 

the dot product is also referred to as the scalar product.  

What does the output of the dot product signify? To understand that, take a look at the 

above figure. Take a look at vector u. If vector u is projected onto v, we would get 

‖u‖cos(α), as shown on the figure. Again, it’s a scalar value. Its length is shown by the curly 



187 
 

brace. The output of the dot product is this projection of u multiplied by the length of 

vector v. So, we can write: 

 u · v = (projection of u onto v) ∗ (length of v)  

Let’s examine this a little bit closely. What happens to projection of u, when u is large? The 

length of the projection increases. Similarly, what happens to the projection when the angle 

between u and v is small? The projection becomes larger as well, because cosine of an 

angle is greatest when the angle is zero. When u and v are perpendicular to each other, this 

projection is zero. In addition, as v increases, the output of the dot product increases. Thus, 

the output of the dot product becomes larger, as 

(1) u gets larger 

(2) v gets larger 

(3) the angle between u and v gets smaller  

Let’s look at a real-world example to get an intuitive understanding. Say an employer wants 

to hire a bunch of sales people to fill some open positions in her company. All of these 

positions require two skills: technical skills (e.g., computer skills) and people skills (e.g., 

communication skills with customers to sell products). The employer is currently 

considering 4 candidates with the following skill profiles.  

 

The overall skill of each candidate is represented by a vector because we consider two 

sperate skills as one. Assume that you can measure each skill separately and they are 

completely independent. For instance, you can give someone a technical test of 100 

questions to measure his or her technical ability. Similarly, you can give a field test to 

measure “people skills” needed for the sales job — for instance, how many bags of dogfood 

a salesperson can sell — to people who don’t have any dogs!  

“Oh, you don’t have any dogs? But, do you know someone in your family who has a dog? Oh, 

your grandma has a dog? Good for her! You know, dogfood is a great gift idea. You are going 
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to buy a Christmas present for your grandma, aren’t you? Um, … have you thought about 

what you are going to buy for her dog? You know, I think she LOVES her dog, and she may 

be quite disappointed if you forget about her dog. I think you shouldn’t disappoint your 

poor grandma. Besides, who knows, she might be considering making a contribution to 

your college fund … Oh, you want to buy 5 bags of dog food …. I knew you were a smart 

guy! I can just tell”. 

That’s how you measure people skills. Once you have measured both skills, you can 

represent two skills using a vector. The length of the vector shows the total amount of skills 

the candidate has and the direction shows which of the two skills that the candidate has 

more of. For instance, Candidate 1 has a lot of technical skills but not much people skills. 

Candidate 3 has a lot of people skills but not much technical skills. Candidate 4 only has a 

small amount of each skill.  

These candidates will be assigned to three sales regions. However, each region is different. 

In some regions, if you have good technical skills, you can make more sales and bring in 

more revenue (income). So, having technical skills would be more valuable for that region. 

It could be due to the product mix, the customer base, or some other factor. Similarly, in 

another region, it could be valuable to have more people skills. The revenue potential for 

each of the three regions is given below. For instance, if you have more people skills, in 

Region A, you can make more sales (and revenue). Technical skills are not very valuable 

there. Compared to the other two regions, it is harder to sell stuff in Region C. For instance, 

it is harder to sell snow tires in Hawaii, even if you are a really good salesman.  

 

 
The employer wants to maximize the revenue generated from each region. For that, she has 

to decide which candidates to hire and which candidate to send to each region. How should 

she approach this?  
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You guessed right! We have to take the dot product between the “skill vector” and the 

“revenue potential” vector for each candidate, for each region. For instance, if you take dot 

product between Candidate 1 and Region 1, you get the revenue Candidate 1 can earn in 

Region 1. It doesn’t take an MBA to realize that Candidate 1 will make more sales and earn 

more in Region B. Similarly, Candidate 3 will do well in Region A. For Region C, which is the 

most challenging region to sell stuff, Candidate 4 will do far worse than Candidate 2, 

because Candidate 2, who has more skills, can overcome some of the obstacles and make 

more revenue.  

The above example should give you an intuitive feeling about what the dot product does. 

When a candidate and a region are “aligned”, the output of the dot product is high. 

Otherwise, it is low.  In real-world situations similar to our example, vectors will have many 

more dimensions (not just 2). Taking the dot product is one way to score (evaluate) a 

match between two objects. Next time you are on a date, you can try scoring your 

relationship with a dot product. You will see instant results. I wouldn’t guarantee it would 

be pretty, though.  

In physics, the dot product is used to calculate the work done by a force. When a force acts 

upon an object, it moves the object. The work done by that force is the dot product between 

the force and the displacement. 

Work = Force · Displacement 

Note that both force and displacement are vectors, because each has a direction. Why do 

we take the dot product in this case? The dot product says the following: what really counts 

as work is the displacement we get in the direction we apply the force. Isn’t that obvious? If 

you push your lawn mower forward to mow grass, but it goes sideways on to the sidewalk 

because of a slope, you didn’t get any real work done — you didn’t mow any grass.  

When finding work done by a force, instead of multiplying the magnitudes of two vectors 

together, we are multiplying the magnitude of one vector by a portion of the magnitude of 

the other vector. This portion is determined by the angle between the two vectors. In other 

words, the portion is determined by how “aligned” the two vectors are. If both vectors are 

in the exact same direction, or “fully aligned”, then you would get the maximum output, 

which is similar to the product of two magnitudes. If the two vectors are not aligned at all, 

or in other words perpendicular (orthogonal), the output is zero.  

We saw the same reasoning with both examples. In the first example, if the skills and the 

requirements of the region are aligned, you get the maximum output (revenue). In the 

second example, if the force and the displacement are aligned, you get the maximum output 

(work done). Any “misalignment” reduces the output.  
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7.8.2 CROSS PRODUCT (VECTOR PRODUCT) 

The second useful product between two vectors is called the cross product. As we 

discussed before, the only reason we define these products (or any function for that 

matter) is because they are useful in representing some real-world relationship. So, let’s 

see what the cross product represents and why it is useful. 

If you have ever opened a heavy door, you know that it is easier to push open if you push it 

closer to the handle (or knob) of the door. Instead, if you push close to the hinge, you will 

have to push really hard.  Your push (force) opens the door and produces a rotation, with 

the hinge as the center of rotation, as shown below (looking from above). 

 

We can model this situation using two vectors as shown above. Vector v represents the 

force you apply, and vector u represents the distance and direction from the hinge where 

the force is applied. As we discussed before, if you increase the magnitude of both u and v, 

the door opens faster, producing “more rotation”. The “amount of rotation a force is 

capable of producing” is called the “moment of a force”, or simply the “moment”, or 

torque.  Think about it this way. If you apply a force on an object, it produces acceleration, 

moving in a straight line. However, if this object is anchored at a point, this force causes it 

to rotate around that point. The amount of rotation a force is capable of producing around a 

given point (center of rotation), is its “moment” or “torque”. Using the door as an example, 

we can model the magnitude of moment as:  

magnitude of moment = distance from hinge ∗ magnitude of force 

   = ‖u‖ ∗ ‖v‖ 

where ‖u‖ and ‖v‖ are the magnitudes (lengths) of vectors u and v, respectively.  

In the above example, you place your hand perpendicular to the door to apply the force. 

However, what happens if you push the door with a stick at an angle, as shown on the left 

figure below? Again, you will find that if the stick is not perpendicular to the door, it is 
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harder to open the door. That is, more force is necessary to produce the same moment 

(rotation). Why? Because only the fraction (component) of the force that is perpendicular 

to the door actually contributes to the opening of the door. This fraction (component) of 

the force is given by the magnitude of v multiplied by sin(α), where α is the angle between 

the door and the force, as shown below. The middle figure below shows this component, 

and the right figure shows how it is calculated using a right triangle. For instance, sin(α) is 

1 when α is 900, which means that when we apply the force perpendicularly, the entire 

force goes to opening the door (producing rotation). As α decreases, sin(α) decreases, 

thereby decreasing the fraction of force contributing to rotation. When α is 00, the force 

cannot produce any rotation because the force is parallel to the door (i.e., vector v is 

parallel to vector u).  

 

 
Therefore, we can modify the above equation for the magnitude of moment (torque) as: 

magnitude of moment = distance from hinge ∗ magnitude of force ∗ sine of angle  

   = ‖u‖ ∗ ‖v‖ ∗ sin(α) 

The above model summarizes what we know about opening a door. As the magnitudes of u, 

v, and sin(α) increase, we can produce more moment (and rotation). If you have ever 

slammed a door as a teenager, you know this very well. The same model applies to 

loosening or tightening a nut or bolt with a wrench. The longer the handle of the wrench 

(u), the easier it is to turn (rotate) the nut or bolt — i.e., you have to apply less force to 

produce the same amount of torque. Further, it is easier to tighten a nut, if you push the 

wrench in a perpendicular direction to the handle of the wrench.  

Are we done with our model then? Not so fast. To completely describe rotation, a 

magnitude alone is not sufficient. The rotation occurs about an axis. For instance, when you 

apply a force on a door, the door rotates around its hinges. The hinge defines a vertical axis. 

Therefore, the door rotates around a vertical axis. Similarly, when you apply a torque to a 

nut, the nut rotates about an axis. The axis is not always vertical. This axis is based on how 

the nut is oriented. Therefore, if you want to completely define a rotation or moment, it is 

not sufficient to give only a magnitude. You must specify an axis of rotation. As another 

example, the moment required to open a car door is very different from the moment 
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required to open the hood of a car or a trunk of a hatchback/minivan. Car doors have 

hinges with a vertical axis but hoods and hatches usually have hinges with horizontal axes.  

What this means is that a moment cannot be a scalar quantity. We need a direction as well 

to specify the axis around which rotation occurs. Therefore, we need a vector. Let’s 

represent this vector by letter w. Then the above equation becomes: 

‖w‖ = ‖u‖ ‖v‖ sin(α) 

Note that the above model still only gives us the magnitude of moment, ‖w‖. We still need 

to define its direction. To do that, we make the direction of w the axis of rotation. For 

instance, when opening a door, the axis of rotation is vertical. Thus, w needs to point in the 

vertical direction. But here is the rub: a vertical axis has two directions: up and down. We 

have to pick one of those directions as the “positive” direction. Since the axis of rotation is 

not always vertical, we cannot say that “up” is the positive direction. For instance, for the 

hood of a car, which side is “up”? Do you see the point? Therefore, we need a more precise 

definition to define the “positive” direction. To do this, we use a rule called the “right-hand” 

rule, which says, using your right hand, if you point your forefinger at u and middle finger 

at v, then the positive direction of w is given by the direction of the thumb. Equivalently, if 

you know the direction of rotation, if you curl your four fingers of your right hand in the 

direction of rotation with your thumb sticking outwards (similar to the way you give a 

“thumbs-up” gesture), your thumb points in the positive direction of w. For instance, when 

you open the door, you know the direction of rotation, so you can curl your fingers that 

way, leading to your thumb pointing up.  

It is really important to remember that there is nothing magical about the right-hand rule. 

We just wanted a convention to indicate the “positive” direction of an axis of rotation. We 

picked one convention, which always works. This is similar to deciding that going forwards 

is positive and going backwards is negative. We pick a convention and stick to it, but 

nonetheless, it is just a convention. 

Now, we have achieved what we wanted. We have found a way to 

calculate the torque (or moment) produced by a force v, acting on a 

point specified by vector u. As you can see, this is a vector function 

with two inputs, u and v, producing vector output, w. Since this 

function produces a vector output, we call it the “vector product”. 

Since this is a common function, we use an operator to represent it: 

the × operator. That’s why we also call this function the “cross 

product”. Using this new operator, we can write: 

w = u × v 
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where the magnitude of w is given by ‖u‖‖v‖ sin(α), where α is the angle between two 

vectors, and the direction of w is given by the right-hand rule.  

Using the definition of the cross product, let’s see what increases the magnitude of moment. 

The magnitude of the cross product can be made larger by 

(1) increasing the length of u (increasing distance from axis to the point v is applied) 

(2) increasing the length of v (increasing force) 

(3) making the angle between u and v close to perpendicular as possible 

The following figure shows vector w, resulting from the cross product between u and v. In 

the left diagram, we have drawn u and v with their tails connected (“tails together”) so that 

we can easily see the plane where u and v lie and the angle between them, because u and v 

make two sides of a parallelogram. However, note that it is much more intuitive to draw u 

and v “head to tail” as shown on the right because, this helps us visualize how the two 

vectors produce rotation. You can look at this as vector v pulling vector u to produce 

rotation around the axis pointed by w. Just as before, vector u represents the distance from 

the hinge and v represents the force. However, recall that these vectors are not “grounded” 

at any point. Therefore, we can move them anywhere we want, and they still represent the 

same model. Imagining them as drawn on the right is more intuitive, although you should 

take special care to note the correct angle between u and v.  

 

 
The rotation is easy to see when you look at vectors u and v from the top, as shown below. 

Figure (a) shows the two vectors drawn “head to tail”, which can be thought of as vector v 

pulling vector u to produce moment (rotation). This is similar to opening a door (u) by 

pulling it from the handle. In figure (b), the same two vectors are drawn “heads together” to 

show vector v pushing vector u to produce the same counter-clockwise rotation.  This is 

similar to opening a door (u) by pushing with vector v. Since the rotation is counter-

clockwise, the axis of rotation is pointing up (perpendicular to the page). 
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Figures (c) and (d) show similar pulling and pushing but with vectors u and v interchanged 

to show the cross product v×u instead of u×v . Here, we consider the first vector as the 

displacement (distance & direction) and the second vector as the force. Notice that these 

two vectors produce clockwise rotation and you should be able to see clearly with this 

“head to tail” and “heads together” arrangement of vectors. Since the moments are 

clockwise, the result of the cross product is negative, meaning that the axis of rotation is 

pointing down (into the page).  

7.8.3 WHY IS VECTOR PRODUCT NOT COMMUTATIVE? 

The above figure shows an important property of the cross product: v×u and u×v do not 

produce the same result. Unlike scalar multiplication, where 5×2 and 2×5 give the same 

result, the cross product is not commutative. That is, we cannot switch the places of two 

inputs. Why is this the case? In the above figure, v pushing u (b) is not the same as u 

pushing v (d). Although both cases produce the same magnitude of moment (torque), they 

don’t produce the same direction for their axes of moment (or rotation).  When you switch 

the two vectors in a cross product, the direction of the axis changes sign. This is not the 

case for scalar multiplication, which represents only a magnitude. Since a cross product 

represents a moment about an axis, switching the two inputs changes (flips) the axis of 

rotation.  

Now, you should have a complete, intuitive feel about what the cross product or the vector 

product represents.  

There is another interesting observation you can make about vector representation: when 

we use a vector to represent a force, the direction of the vector represents the line along 

which the force is applied. When we use a vector to represent a torque, the direction of the 

vector represents the axis of rotation. This shows how the direction of a vector can be used 

to represent two different concepts. 
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7.8.4 2D VECTORS VS. COMPLEX NUMBERS 

There is one other very interesting question you can ask about the vector product. In 

Chapter 6, you saw that complex numbers can represent rotated objects in a 2D plane. In 

fact, if you multiply one complex number by another, the product is a rotated object. How is 

that different from the moment of a force (torque), produced by the cross product? In other 

words, is the vector product similar to the product of two complex numbers? The answer is 

no. As we saw above, a moment produces a vector that is perpendicular to the plane where 

its input vectors lie. In other words, the vector product between two 2D objects cannot be 

represented as a 2D object in the same plane, where the inputs for the vector product come 

from. A complex number can never do that because the output of complex multiplication is 

confined to the same 2D space where the inputs come from. Therefore, it shows that, a 

moment of a force is not something that can be modeled using complex numbers and it 

shows vector functions can represent relationships that complex numbers cannot 

represent.  

This is an important consideration in modeling 2D relationships. We have the choice to 

model a 2D object as a complex number or a vector. A complex number has two 

components similar to a 2D vector. If the functions (models) you are interested in produce 

outputs in the same 2D plane where the inputs come from, complex numbers are sufficient, 

and even preferable, because manipulating complex numbers is easier compared to 

manipulating vectors. For instance, we can use normal multiplication operator with 

complex numbers but we can’t do that with vectors. That’s why we heavily use complex 

numbers in electrical engineering where input and output waveforms can be modeled 

using complex numbers. However, for other types of modeling, that is not the case. That’s 

what we saw with the moment of a force. Complex numbers are insufficient to model the 

moment of a force resulting from applying a force to a point away from a ‘hinge’. Of course, 

if your objects are 3D or higher dimensioned, then vectors are the only option between the 

two.  

7.9 Linear Combinations of Vectors 

In Section 4.2.1.2, we looked at linear combinations of scalars. Remember, we looked at 

how to make punch using different juice cans. Linear combinations with vectors are exactly 

the same, except that inputs are vectors instead of scalars. Recall that, to form a linear 

combination, only two operations are allowed: 

(1) Inputs can be multiplied by a scalar (i.e., inputs can be scaled or amplified) 

(2) The scaled inputs in (1) can be added together 

Let’s look at a simple example using two vectors, u and v, as shown below. We form one 

linear combination, 2u + 3v using these two vectors, to produce the output vector w. To do 
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that, we multiply vector u by 2, multiply vector v by 3, and add those two results together. 

The Visual Model for this linear combination is given on the right.  

 

It’s fairly straightforward to produce an output vector using a liner combination of input 

vectors. So, you may ask what the big deal is. Before I reveal the importance of it, let me ask 

a question: if we can change the values of coefficients 2 and 3 freely, what kind of output 

vectors can we produce using u and v? In other words, what could w be? Think about it for 

a little bit. The output w can be 5u + 3v, or 0.1u + 100v, and so on. Is there any vector in 

this 2D plane that w cannot represent? The answer is no. The output vector w can become 

any vector you can draw on this 2D plane, as long as u and v are not parallel, which is the 

case for the vectors u and v shown above.  

What does this really mean? Using any two non-parallel vectors (u and v), we can build up 

(or compose) any other vector (w) in the same plane, as an output of a linear combination. 

That is, vector w is a linear combination of vectors, u and v. Conversely, any vector w in 

the 2D plane can be decomposed into two vectors u and v with proper scalar coefficients.  

Because we can build up any other vector using u and v, we call u and v “basis vectors” or 

“basis”. As the above example shows, any two vectors can be the basis for the 2D plane the 

vectors reside, as long as they are not parallel. How, about 3D? We just need 3 basis 

vectors. How about 4D? We need just 4 basis vectors. I think you get the point. 

 

   
For the 2D plane, you can come up with any number of such basis vector pairs. One such 

pair is known as the standard basis or the Cartesian basis. For this basis, the two basis 

vectors are perpendicular (orthogonal), and each have unit length. They are labeled i and j 

respectively. The following figure shows how to represent the purple vector using the 

standard basis vectors i and j. The purple vector can be constructed by adding 3 of i and 2 

of j, to get 3i + 2j. 

Any vector can be represented as a linear combination of basis vectors 
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Using basis i and j, we can write any other vector as a linear 

combination of these two basis vectors. For the 3rd 

dimension, similarly, we can introduce the basis vector k.  

If you have been representing vectors as 5i + 3j + 2k without 

much thought, you are now well equipped to understand 

why we do that. Further, you should now understand that 

Cartesian basis is not the only basis we can have. We can 

pick other basis-vectors as well.  

7.10 Component Representation and Algebraic Vectors 

In the previous section, we introduced the basis and how we can represent any vector as a 

linear combination of basis vectors (or unit basis vectors in Cartesian coordinates). 

Another intuitive way to think about basis vectors is as follows: if we want to specify a 

location on a 2D map, you can say, go 3 miles east and 2 miles north. Using “1 mile east”, 

and “1 mile north” as our two basis vectors, we can specify any location on a 2D map. If we 

want to add a height, we can add another 1-unit basis vector pointing up (vertically).  

This type of representation of a vector is called the component representation (or the 

component form) of a vector. In this form, we can think about a vector as a sum of its 

components.  For instance, in 2D, the vector 2i + 3j is in the component form, and we can 

represent it with its two components as (2, 3) with respect to the basis i and j. In 3D, the 

vector 2i + 3j + 4k is in component form and we can represent it with its components 

(2, 3, 4) with respect to the basis i, j, and k. Since we use algebra (e.g., a sequence of 

numbers) to represent vectors, these vectors are also called algebraic vectors.  

At the start of this chapter, we introduced vectors as directed line segments. We call them 

geometric vectors. We can use the component form to break down (decompose) 

geometric vectors into components with respect to a basis. Compared to a line segment, the 

component form has one huge advantage: it allows us to algebraically manipulate vectors. 

That’s exactly what we are going to do in this section. We are going to look at the dot 

product and cross product using the component form.  
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7.10.1 ADDITION AND SUBTRACTION IN COMPONENT REPRESENTATION 

Adding two vectors in the component form is straightforward. Since the basis vectors i, j, 

and k are independent (orthogonal), we can add each basis separately as shown below: 

 

In other words, if we have u = (2, 3, 4) and v = (5, 6, 7), we get u+v = (7, 9, 11). This shows 

how component form leads to easy algebraic manipulations.  

Vector subtraction in the component form works the same way as addition except that we 

perform the subtraction operation instead of addition.  

7.10.2 DOT PRODUCT IN COMPONENT REPRESENTATION 

With geometric vectors, we looked at the dot product (scalar product) between two vectors 

as the product of their magnitudes multiplied by the cosine of the angle between them. The 

component representation gives us a second definition, which is more amenable to algebra. 

With this definition, if we have two vectors, u and v, expressed in the standard basis, the 

process for calculating the dot product is shown below.  

In words, we sum up 3 terms, where each term is produced by multiplying corresponding 

coefficients for a given dimension. Can you explain why we do the multiplication this way? 

Well, in the Cartesian form, the basis vectors are perpendicular to each other. So, if you 

calculate the dot product of 2i and 5i, the result is 10, because the angle between the above 

two vectors is zero, and cos(0) is 1. However, if you multiplied 2i and 6j, the result is zero. 

Why? The basis vector i and j are perpendicular to each other. Therefore, cos(900) is 0 and 
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the dot product is zero. Therefore, the dot product in the standard basis boils down to a 

sum of products, where the products are between the same basis. 

The computer code for calculating the dot product is given below for two 2D vectors u and 

v, where u  =  ai + bj and v  =  ci + dj. The formula a∗c + b∗d calculates the dot product. The 

code in the 2nd box evaluates (2i + 3j) · (4i + 5j), which evaluates to 23.  

 

 
The following function implements the dot product for two n-dimensional vectors. 

Consequently, it takes in two arrays, each with n elements, and n itself so that the function 

knows the number of elements in each array. Remember we learned how to pass arrays as 

function arguments in Section 5.1. In the second box, we evaluate the dot product between 

two 3D vectors. For 3D vectors, the length of each array is 3. The print statemen prints the 

result of the dot product, which is 56. 

 

 
The computer code shows another big advantage of component representation: the dot 

product in the component form can be easily computed with a computer program. Since 

computers are used to do almost all engineering calculations today, the component 

function dotProduct( vector1, vector2, n )  
{ 
 sum = 0  

 for i=0 to n 
 { 
  term = vector1[i] * vector2[i] 

sum = sum + term 
 } 
 return sum 
} 
 
vector1 = [2,3,4] 

vector2 = [5,6,7] 

y = dotProduct( vector1, vector2, 3 )   // (2,3,4).(5,6,7) 

print( y )        // prints 56 

function dotProduct2D( a, b, c, d )  
{ 
 sum = a*c + b*d 

 return sum 
} 
 

y = dotProduct2D( 2,3,4,5 ) // (2i+3j) · (4i+5j) 

print( y )    // prints 23 
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representation has a huge advantage. However, note that this component definition of the 

dot product does not give us any intuition as to what we are doing and why we are doing it. 

If you just read this section, would you be able to explain what the dot product really 

means? I would highly doubt it. That’s why we started with geometric vectors. 

7.10.2.1 Dot Product as a Linear Combination of Components 

When we have two vectors ai+bj and ci+dj, we calculate the dot product as a∗c + b∗d.  

Notice that this formula for calculating the dot product is a linear combination. This is not a 

coincidence. In the Cartesian form, the Dot Product between two vectors is a linear 

combination between their scalar components. This observation has enormous 

implications, as we will see in the next chapter. 

 

   
There is one thing we should clarify before we move on: you can do a linear combination of 

different inputs — scalar inputs and vector inputs. When calculating the dot product, the 

inputs are scalar components of each vector. In such a case, the output is a scalar. We call 

this a linear combination of scalar inputs, or the dot product. Alternatively, if the inputs 

are vectors, like u and v, you can do a linear combination of these vectors, like 2u + 3v, 

producing an output vector, w. This is a linear combination of vector inputs, as we saw 

in Section 7.9. This is not a dot product.  

 

To summarize, in Cartesian form, the dot product is a linear combination of scalar 

components. The converse is also true. That is, when we have a linear combination with 

scalar inputs, that can be calculated as a dot product. We will use this fact heavily when 

working with matrices.  

 

   
Why is this the case? Recall that a linear combination is a linear function with more than 

one input. That is, a linear combination is a sum of multiple linear functions (linear terms) 

of single input. Consider the following linear function with one input 

 y = a x         (1)   

where x is the scalar input variable, a is the scalar multiplier, and y is the scalar output. 

Now, compare this with a linear combination of just two variables, x1 and x2, with two 

scalar constants a1 and a2. 

In Cartesian form, the Dot Product is a linear combination of components (of vectors) 

A linear combination with scalar inputs can be calculated as a Dot Product 
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  y = a1 x1 + a2 x2       (2)   

     = a · x         (3) 

Why is (2) a dot product?  If we have a constant vector a = (a1, a2) and input vector 

x=(x1, x2), then (2) is same as a · x.  In other words, vector a acts as a set of coefficients, or 

a vector multiplier, for the input vector x.  This shows how we can model a linear 

combination with scalar inputs as a dot product.  

 
Here is another interesting observation: can you identify (1), which has just one input 

variable, as a degenerate case of (3), which has two input variables?  Notice that (1) has a 

scalar multiplier and a scalar input, while (2) has a vector multiplier and a vector input. 

Therefore, the function y = a x can also be viewed as a dot product between two vectors of 

just one component: (a) and (x). Therfore, the scalar multiplication, which has a single 

input, is a special case of the dot product. Therefore, the dot product (scalar product) is a 

generalization of the scalar multiplication, catering to linear combinations with multiplie 

scalar inputs. 

  
We can also look at the dot product, and hence linear combinations with scalar inputs, 

graphically. You know that the graph of a linear model y = a x is a straight line going through 

the origin, with scalar multiplier a. We can look at multiplier a as the slope of a line. We can 

extend this graph to a linear combination. How?  If we were to graph the linear 

combination in (2), we would get a plane with a1 as the slope in the x1 direction and a2 as 

the slope in the x2 direction as shown below. For instance, the following graph shows  

y = 2x1 + 4x2 

The dot product in the component form is a generalization of scalar multiplication 
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The y value is the output, or the distance in y direction (height). To obtain y, we have to go 

in the x1 direction along a line with slope a1, and then go in the x2 direction along a line with 

slope a2. For instance, in the above graph, starting at the origin, we go 20 units in the x1 

direction, which has slope of 2, and then go 6 units in the x2 direction, which has slope of 4. 

Therefore, the distance (height) we climbed in the y direction is 2∗20 + 4∗6 = 64.   

In the component form, we can look at the above dot product as follows: 

total height = (slope1, slope2) · (distance1, distance2) 

This expands to: 

 total height  = slope1 ∗ disatance1  +   slope2 ∗ disatance2 

   = height gained in x1 direction + height gained in x2 direction 

This illustrates how a 2D linear combination is a sum of two linear terms, and similarly, 

how a 2D dot product is a sum of two scalar multiplications.  

In this analogy, the result of the dot product is equivalent to the height we gain by climbing 

a linearly sloped hill described by a “slope vector” and a “distance vector”. That is, the slope 

in each direction is described by the slope vector, and the distance we travel in each 

direction is described by the distance vector. Since the dot product is commutative, we can 

treat either the first or second vector as our slope vector. In both cases, the “other vector” 

becomes the distance vector. In both cases, we get the same output. Notice that we are just 

ascribing a meaning to inputs to get an intuitive understanding of the dot product.  
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This analogy teaches us two things about the dot product in the Cartesian form. First and 

foremost, it shows that the dot product is a linear combination of components. Conversely, 

a linear combination of scalar inputs can be modeled as a dot product.  

7.10.3 CROSS PRODUCT IN COMPONENT REPRESENTATION  

In Section 7.8.2, we defined the cross product between two geometric vectors as the 

product of their magnitudes multiplied by the sine of the angle between them. Now, we are 

going to look at another definition of cross product, with the help of component 

representation. In the Cartesian form, the cross product between two 2D vectors is shown 

below: 

          u  = ai + bj 

          v  = ci + dj 

  u × v =  (ad – bc)k 

This can be derived algebraically as follows: 

 u × v  = (ai + bj) × (ci + dj) 

 = ai×(ci + dj) + bj×(ci + dj)     (1) 

 = ac (i × i) + ad (i × j) + bc (j × i) + bd(j × j)   (2) 

Note that i × i and j × j are zero, because when two vectors are parallel, their cross product 

(torque) is zero, because the angle between them is zero (therefore the sine of the angle is 

zero). Therefore, (2) becomes: 

 u × v  = ad(i × j) + bc(j × i)      (3) 

Further, if you look at i × j, the result is k. Remember, the cross product produces a vector 

that is perpendicular to both input vectors. What is perpendicular to both i and j? It is k. 

Alternatively, if you use the right-hand rule, with your index and middle finger pointing in 

the direction of i and j respectively, then your thumb points in the direction of k. Similarly, 

j × i is -k, using the same right-hand rule. Therefore, from (3), we get: 

 u × v = (ad – bc)k 

What does this new vector represent? In order to understand that, let’s draw the two 

vectors ai+bj and ci+dj as given below. From (1), ignoring the zero terms, we get the cross 

product: 

 

 u × v   =  ai × dj    +  bj × ci 
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This multiplication is illustrated in the figure below. Remember, we looked at two vectors 

producing this type of rotation in Section 7.8.2. You can see that the term ai × dj produces a 

moment (rotation) in the counter-clockwise direction (looking from top). Its magnitude is 

ad, and its axis of rotation is k, from the right-hand rule. The other term, bj × ci produces 

rotation in the clockwise direction. That is, its axis of rotation is -k. The net moment is 

determined by the difference of these two terms. If the magnitude of ad is larger than the 

magnitude of bc, the counter-clockwise moment wins, and these two vectors produce a 

counter-clockwise moment (rotation). If the magnitude of bc is larger than the magnitude 

of ad, then we will have a clockwise moment (rotation).  

 

 
If the vectors are 3 dimensional, you can use similar 

algebraic expansion and reasoning to understand the 

cross product.  The only difference is that now you have 

rotation around all 3 axes. Can you imagine a sphere 

rotating around all 3 axes? It is shown here. When you hit 

a baseball with a bat, or use a cue stick to hit the cue ball 

in pool (billiards), it is likely that the ball will spin around 

all 3 axes. So, the next time you hit a baseball with a bat, 

remember that you are taking the cross product between 

the force delivered by the bat and the vector 

representing the point you hit on the ball (from its center of gravity). However, don’t tell 

anyone on the ball field that you are calculating cross products, if you have any desire to 

play baseball again.    

7.11 What Unites Algebraic and Geometric Vectors?  

We saw that we can model geometric objects in 3D space using vectors. However, do 

vectors always have to be geometric objects in Euclidian space? Let’s see. Let’s say you 

want to represent your SAT score, which has two components — a math score and a verbal 

score. You cannot use a single number to represent such a score with two components. 
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Let’s take another example. In team sports like soccer, a score is expressed as 5 to 3 (team 

A has 5 points and team B has 3 points). This score has two components. Similarly, we can 

represent a pant by numbers 30 and 36, where the 1st number is the waist and 2nd number 

is the length. To indicate that these two numbers are related and belong to the same object, 

we use parenthesis to group them as (30, 36) to create one vector. This is an algebraic 

vector, as we saw in Section 7.10. Notice that vector (30, 36) has nothing do with 

geometry. It does not represent coordinates on a plane. It’s just a pair of numbers. Of 

course, we can plot a pair of numbers as coordinates on a plane, but that’s just a 

visualization aid. You don’t need to plot the waist and length of a pant to describe a pant. 

 

 

An algebraic vector with 2 components (2 real numbers) is said to be in R2 space 

(analogues to 2D for geometric vectors). Similarly, we have R3 (for 3 numbers), and, by 

extension, Rn (for n-numbers). For instance, the group of three numbers (100, 113, 112) is 

a vector in R3, which could describe Red, Green, and Blue (RGB) primary color values 

(components) of a compound color.  

 
   
It is important to understand the difference between geometric vectors (line segments in 

Euclidian space) and algebraic vectors (a sequence of numbers). Then, why are they both 

called vectors? It’s because both of them can be composed with linear combinations.  

 

Vectors are nothing more than linear combinations, of some basis. Equivalently, vectors 

can be linearly combined to produce other vectors. Therefore, we can expand the definition 

of vectors to include any object that can be expressed as a linear combination. Both 

geometric vectors and algebraic vectors fit the bill because both of those can be composed 

using components (i.e., basis). A line segment in Euclidian space can be constructed by 

linearly combining different line segments (see Section 7.9). Similarly, for algebraic vectors, 

take the RGB vector (100, 113, 112) we saw before. It can be modelled as a linear 

combination as: 

 (100, 113, 112) = 100∗(1, 0, 0) + 113∗(0, 1, 0) + 112∗(0, 0, 1) 

An Algebraic Vector is just a sequence of numbers 

A vector is a linear combination (of some basis) 

A sequence of n numbers represents a vector in Rn 
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Here, (1, 0, 0), (0, 1, 0), and (0, 0, 1) are the basis vectors, each representing Red, Green, and 

Blue.  

Since geometric and algebraic vectors are both linear combinations, we can easily convert 

between them. For instance, if we have an algebraic vector (3, 5), we can plot it on a 2D 

plane as a directed line segment. Similarly, when we have a directed line segment, if we 

decompose it to components with respect to some basis (e.g., as 2i + 3j in the standard 

basis), we can represent that as an algebraic vector (2, 3).   

This can be a major source of confusion for many students. As someone quipped, on 

Monday, a vector is a directed line segment; on Wednesday, a vector is a sequence of 

numbers. Now you know better — a vector is a linear combination of some basis. For 

instance, a punch we make using 3, 5, and 6 cans of apple, mango, and orange juice, 

respectively, can be represented as (3, 5, 6), with respect to the above 3 varieties of juice 

cans as the basis.  

If you understood that, here is a brain teaser. We learned that a polynomial is a linear 

combination of power functions. Are polynomials vectors as well? You bet they are. What is 

the basis of those vectors? Yes, power functions. For instance, the vector (3, 5, 2) 

represents the polynomial 3x2 +5x + 2, with respect to the basis (power functions) x2, x1, 

and x0. If you wanted to add 8x2 + 5 to the above polynomial, you could add vectors (3, 5, 2) 

and (8, 0, 5) together. Similar reasoning easily shows complex numbers as vectors with a 

real part and an imaginary part as the basis.  

 

7.12 Modeling with Vectors (Scalar Fields and Vector Fields) 

Vectors allow us to model relationships with multiple inputs and multiple outputs. Let’s see 

how we can do that.  

7.12.1 SCALAR FIELDS 

As we saw in Section 1.8, real-world models can have many inputs. However, there is an 

alternate way to represent multiple inputs. Can you guess what it is? Yes, a vector. A vector 

can contain multiple scalar components. Therefore, a function accepting multiple inputs 

can be modelled as a function accepting a vector.  

Let’s look at an example. We can represent the temperature at each point in a room with a 

function of 3 variables as follows: 

tempOfRoom(x, y, z) = 2x + 2y – z 

Polynomials and Complex Numbers are Vectors too! 
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In the above function, the inputs x, y, z represent each point 

(x, y, z) in 3D space, with reference to the Cartesian coordinate 

system shown. For instance, x represents distance from wall B, y 

represents the distance from wall A, and z represents the height 

from the floor.  According to the function definition, as we get 

away from walls A and B (as x and y increase), the temperature 

rises. Similarly, as we go up in height (as z increases), the 

temperature drops. This could mean that there is some heat 

source (like a fireplace) on the floor, at the opposite corner from where wall A and B meets 

(as shown). Do you see how we can use functions of multiple inputs for modelling? 

 

The output of this model, temperature, is a scalar quantity. Therefore, the function 

tempOfRoom(x, y, z), which outputs a scalar value (e.g., temperature) for each input point 

in 3D space, is called a “scalar field”. The term “field” refers to the 3D space. Therefore, a 

“scalar field” represents a 3D space that is filled with scalars, which happen to be 

temperature values in this example. 

The computer code for function tempOfRoom is given below, along with a call to this 

function to evaluate the temperature in the room at the point (5, 3, 6).  
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The function tempOfRoom(x, y, z) accepts 3 scalar inputs. However, the 

point (x, y, z) can also be thought of a vector with 3 components. This is a 

position vector. The Visual Model shows a model accepting a position 

vector, u, and producing a scalar value, s. To model our temperature field, 

position vector u needs three scalar components: x, y, and z. 

The computer code below shows the tempOfRoom function implemented 

using a single input “vector”, which is represented by an object called “vec”. In 

programming, an object is a collection of multiple data items. Our 

object vec has 3 components to represent the x, y, and z components of 

the vector. Notice that we use the “.” (dot) to access each component 

(member) of the object. For instance, vec.x refers to the x component 

of the vec object. When we call the function, we use the JavaScript-like expression {x:5, 

y:3, z:6} to set each component of the pos_vec object. Note that different programming 

languages have different constructs like structures, classes, and objects to group multiple 

components into one entity.  We could have also used a 3-element array to represent our 

3D position vector but objects/structures give us the ability to name each component like 

x, y, and z.  

Most importantly, the code above treats the input to the function tempOfRoom as 3 scalars, 

while the code below treats the input as a single vector. This clearly shows both ways we 

can represent the input to a scalar field.  

function tempOfRoom( x, y, z )  
{ 
 temp = 2*x + 2*y - z      

 return temp 
} 

temp = tempOfRoom( 5,3, 6 ) // temp at point 5,3,6 

print( temp )               // prints 22 
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7.12.2 VECTOR FIELDS 

In the previous section, we met scalar fields. However, as we 

know, a scalar cannot represent all objects we want to 

represent. For instance, what if we wanted to represent the 

velocity of wind at each point in a room? Velocity is a vector. 

This means that each point in space is assigned a vector. In 

other words, each input (x, y, z) point has a corresponding 

output vector value, w, as shown by our Visual Model. Such a 

field is called a “vector field”. 

Vector fields are a vast area of study. I just wanted to introduce you to the concept and 

show how it fits in the bigger picture. You may wonder what the point is in knowing the 

velocity of air at every point in a room. Well, that’s effectively how you would model a wind 

tunnel, or a tornado, which is modelled at a much large scale than a room. The same 

concept applies to air or other fluids flowing through pipes, aircraft engines, turbines, etc. 

Velocity is not the only vector we want to associate with points in space. Another quite 

useful vector that can be associated with a point in space is force. Such a vector field is also 

known as a “force field”. The force can be due to electrical charge, magnetism, gravity, etc. 

If you hear people referring to a gravitational field or an electric field, now you know what 

they mean.  

One last example. Say you are a hiker climbing a steep slope on a trail, and you stop at some 

point on the trail. If you go east, you have to climb a 100 slope. If you go north, you have to 

climb a 50 slope. If you go west, you have to climb down 90 slope, and so on. As you can see, 

the slope changes based on the direction. Therefore, to represent such a slope, we need a 

vector. This vector is known as the gradient. In component form, the gradient gives the 

slope in the direction of each component. As a geometric vector, it points in the direction of 

the maximum slope at that point. Therefore, to represent the gradient at each point, we 

need a vector field, which is also known in this case as a gradient field.  

function tempOfRoom( vec )   // one input with 3 components 
{ 
 temp = 2 * vec.x + 2 * vec.y – vec.z      

 return temp 
} 

pos_vec = {x:5, y:3, z:6}   // create position vector (5,3,6) 

temp = tempOfRoom( pos_vec ) // find temp at position vector 

print( temp )                // prints 22 
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To develop an intuitive understanding about how to model a vector field, let’s consider an 

example with velocity of air over an open flat surface, like a tennis court or a parking lot. 

Let’s start small. First, let’s say that air is rising up uniformly over the parking lot, because 

the surface is uniformly heated. This is shown below.  

If we model the above situation with a vector filed, we would have something like, 

velocityOfAir(x, y, z) = 0i + 0j + 2k 

 

 
The above model shows that air is moving straight up at each point in space, at a constant 

velocity of 2 miles an hour. The figure above shows the velocity for some random points. A 

point can be thought of as x units east, y units north, and z units up, measured from the 

south-west corner of the parking lot, which is treated as the origin, (0, 0, 0). At any point 

(x, y, z), air is rising vertically at a constant velocity. The vector 2k, at each point, 

represents this fact. Note that the air does not move horizontally at all.  

Now, let’s make our model a little bit more interesting. Let’s say that air closer to the 

surface rises faster. To model this, let’s say that the velocity of air is 2 miles per hour at the 

surface and is inversely proportional to the height from the surface as given below: 

velocityOfAir(x, y, z) = 0i + 0j + 2/(z+1)k 
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Velocity in the direction of k is now given by the function 2/(z+1). For instance, when the z 

coordinate is 2, we get 2/(2+1) = 2/3. Note that the velocity is lower as we go higher. 

However, the air is still rising only vertically. 

Now, let’s make this model even a little bit more interesting. Let’s add some wind blowing 

from west to east. Say this wind has a constant velocity of 3 miles per hour. Now, we get: 

velocityOfAir(x, y, z) = 3i + 0j + 2/(z+1)k 

 

 
In the above figure, the velocity at each point has a horizontal component. This means that 

air is moving east as well as upwards. In fact, this eastward velocity is higher than the 

upwards velocity at every point, so air is going eastwards faster compared to rising up.   

If the wind from the west was not constant, but instead increased as we went north, 

linearly, our model would become: 

velocityOfAir(x, y, z) = yi + 0j + 2/(z+1)k 
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Note that there is no wind blowing eastwards at the south edge of the parking lot. However, 

as you walk north, you will experience increasing eastward wind. Notice how the i 

component grows as you go north (as we increase y).  

Now, let’s add a constant cross-wind to the above mix, blowing from the south to north. 

Then our model becomes: 

velocityOfAir(x, y, z) = yi + 2j + 2/(z+1)k 

 

 
As you can see, at every point (except the points at the south edge), air is moving north, 

east, and up at the same time. The exact direction of wind at each point is determined by 

the corresponding component of the vector at that point. 

The velocity at any point can be calculated by plugging in the coordinates of that point — 

i.e., using coordinates as input values to the function. For instance, the velocity at point (1, 

2, 2) is given by: 

velocityOfAir(1, 2, 2)  = 2i + 2j + 2/(2+1)k   (1) 

    = 2i + 2j + (2/3)k 

This point (1, 2, 2) is also shown in the above figure, at the end of the dashed lines. 
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This process shows how you come up with a vector field. Although you may think that it is 

silly to model how air moves over a parking lot, similar vector fields help scientists model 

weather over a region. The movement of air is important for predicting weather, the path 

of a tornado, or a storm. That’s why we learn about these models. 

There is another point I want to make about this vector filed. Look at the coefficient of each 

basis vector in (1). This coefficient is itself a scalar function. For example, the coefficient of 

basis i is y, which is a scalar function of y. The coefficient of basis k is 2/(z+1), which is a 

scalar function of z. In general, the coefficient can be a function of x, y, and z. Since each 

coefficient can be a scalar function, we need 3 scalar functions to define a vector field in 3D 

space. The Visual Models below shows this view. The Visual Model on the left shows our 

VelocityOfAir vector field while the one on the right shows a general vector field of 3 input 

variables.  

 

 
We can look at the 3 input coordinates, (x, y, z) as an input vector as well. You can think of 

this as a position vector, representing each position in the input space. The main reason I 

explained this view is because of the next chapter describing matrices. Using matrices, we 

can accept input vectors with multiple components and produce outputs with multiple 

components. The above Visual Models describe why we need this capability — because, 

vector functions need to accept vector inputs with multiple components and produce 

output vectors with multiple components.  

7.12.3 VECTOR VALUED FUNCTIONS OF A PARAMETER 

Any function that outputs a vector is a vector valued function.  A vector field, which is a 

vector valued function, has multiple inputs. However, what if the inputs are related, as we 

saw in Section 1.11? Then, we can use a common parameter to represent all inputs. For 

instance, in our previous example, if all of our inputs are on a straight line, or on a surface, 

the inputs are related and we can use a common parameter. For instance, let’s say we want 

to send a drone over our parking lot along the main diagonal of the parking lot, starting 

from the origin. This diagonal is a straight line, as shown below, where x = y = z. For this, 



214 
 

we are only interested in the velocity of air along this diagonal. We don’t have to know the 

velocity at every point in entire 3D space over the parking lot. That’s overkill.  

 

 
We can use the parameter t, to represent this path, by setting t = x = y = z. The Visual Model 

below, on the left, models this vector valued function. Notice that we replace x, y, and z with 

t to obtain this model, and hence, it is a model with just one input variable, t. 

 

 
The Visual Model for a general vector valued function of one input is given on the right. 

Notice that each component is now obtained with a scalar function of t. As you can see, this 

is a much simpler model than the general vector field, because it has only one input 

variable.  

 

7.13 Function Space 

In this book, we have looked functions that accept only one input and functions that accept 

multiple inputs (vectors). Similarly, we have looked at functions that produce single 

A function with a vector output is a Vector Valued Function 
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(scalar) output or outputs with multiple components (vectors). Therefore, we can 

categorize all of these functions into four categories, as shown below. Notice that functions 

that accept multiple inputs (a point in space) are usually called fields.  

 
 
 

 

Single Output (R) 

(Scalar Output) 

Multi-Component Output (Rn) 

(Vector Output) 

Single Input (R) Scalar Valued Function 
(or Scalar Function) 

Vector Valued Function 

Multi-component 
(Vector) Input (Rn) Scalar Field Vector Field 

 

Remember that we represent a single input with R and n inputs with Rn. The letter R 

represents the set of real numbers. A function that accepts one scalar input accepts any 

number in R (any real number). A function that accepts two inputs accepts an input from 

the set of real numbers R×R or R2, because the input set is a set of vectors like (1, 1), (1, 2), 

(2, 1), etc., which describes R2 combinations (tuples). Similarly, a function accepting n 

inputs is represented by Rn. The same goes for the output. Note that an n-dimensional 

vector is equivalent to Rn in its component representation, because it has n scalar 

components.  

The following figure shows the same categorization we did above, but with Visual Models. 

In these, each letter f, g, or h, represents a scalar function.  
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The above figure nicely summarizes which type of model we should use to model a given 

situation. That is, we can now easily pick a model based on the type of input we have and 

the type of output we want to produce.  

7.14 The Story So Far 

In the previous chapters, we got a glimpse at the function dynasty: how functions came into 

existence, their common properties, their common problems,, and the objects they 

consume and produce. We also looked at the most common models, and how an infinite 

series of simpler functions can model more sophisticated functions. In the previous 

chapter, we extended the objects that functions consume and produce to include “rotated” 

objects in 2D, or objects with two orthogonal components. 

In this chapter, we again extended the objects that functions consume and produce. Instead 

of objects with just a magnitude, or rotated objects in the 2D plane, we met vectors, which 

could represent objects in any orientation in one, two, three, or higher dimensional space. 

In 3D space, they appear as directed line segments. Alternatively, we saw that we can 

represent any such vector with a sequence of 3 numbers as well. Most importantly, we saw 

that vectors are just linear combinations of some basis. According to this definition, line 

segments, sequences of numbers, polynomials, and complex numbers are all vectors 

composed of different basis. 
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As an example, if a scalar could represent your proficiency in one skill, a vector could model 

your proficiency in many skills. Instead of representing you with just one skill, vectors 

would allow us to represent many of your skills, and hence is a better representation of 

you. A function accepting such a vector as input can predict how well you can do in a given 

career, based on the skills that career requires. Therefore, with these new objects called 

vectors, there came new functions too — the dot product (scalar product) and the cross 

product (vector product). We looked at what each of them could model. We saw that the 

dot product calculates the “combined strength” of two vectors, whereas the cross product 

calculated the “tendency to produce rotation” when two vectors are considered.   

Finally, we looked at how to create models with vectors. First, we saw how we can have a 

vector as an input to a model. Such a model can produce a scalar output, yielding a scalar 

field, or produce a vector output, yielding a vector field. With scalar fields, we can model 

the distribution of a scalar quantity like temperature in space. If a model produces a vector 

output instead, for each input point in 3D space to represent a vector output like velocity, 

acceleration, gradient, etc., we get a vector field. In component representation, such a 

vector field looks like a group of multiple scalar functions, where each function is 

calculating one output component using multiple inputs. In essence, functions producing 

vector output use a group of scalar functions to act as a combined function, where each 

scalar function produces one component of the output vector using the same inputs.   

If you have ever listened to film or literary critics, you've probably heard expressions like 

“that character in novel X lacks depth”, “it is a single dimensional character”, or a “two-

dimensional character”. Another character may be described as “multi-dimensional”, 

showing a lot of nuances and complicated behavior. This is exactly the difference between 

scalars and vectors. Vectors let us capture many dimensions. If a novel has a “flat” 

character, the behavior the character exhibits will be “flat” as well. A villain will always kill. 

The protagonist will always do the right thing. A character filled with many complicated 

attributes, on the other hand, will react to situations in quite subtle and nuanced ways. 

That’s exactly what vectors and vector functions allow us to model.   
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8 MATRICES: EXTENDING LINEAR FUNCTIONS  

Chapter Overview: Linear models are the easiest models for us to build and analyze and 

this chapter looks at how to extend linear models so that they can accept vector inputs and 

produce vector outputs. In the process, we will meet our main protagonist, the matrix, and 

its ability to perform linear transformations.  

In this chapter, we are going to take linear combinations to a new level. The first part of this 

chapter is written in a way so that you can understand it even if you don’t have a deep 

knowledge of vectors. This will allow everyone to appreciate the importance of vectors. 

8.1 Linear Combination Revisited 

You use linear combinations almost every day. If an apple is $2 and a banana is $1, the cost 

of 5 apples and 4 bananas is given by 5∗2 + 4∗1. More generally, the cost of a apples and b 

bananas is given by:  

 
 2a + 1b        (1) 

 

This is a linear combination. That is, we multiply each input variable 

(a and b) by a coefficient and add the results together. This linear 

combination can be used to find the cost of any number of apples and 

bananas. Therefore, we can represent it as a function of two input 

variables: 

            y  = 2a + b,  or 

         cost(a, b)  = 2a + b [ a linear combination is a function ] 

With a linear combination, we can pick some fraction of each input and add them together. 

You can think of this as making apple juice from concentrate. You can mix x parts of water 

(say, 4 cups) with y parts (say, 1 cup) of apple juice concentrate to make apple juice. Now, 

your 5 cups of apple juice are actually a linear combination of water and concentrate. Every 

time you drink apple juice, you are drinking a linear combination!  

 

We can also define linear combinations of more variables. E.g., if a price of a cantaloupe is 

$3, for c number of cantaloupes, we can expand our linear combination as: 

 

 y = f (a, b, c) = 2a + b + 3c 
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Similarly, we can also use a linear combination of water, apple juice concentrate, and 

orange juice concentrate, to make punch. 

 

Quick quiz: what’s a linear combination of just one input variable? Well, it’s a linear 

function of the form  f (x) = a x. Therefore, you can look at a linear combination as a sum of 

multiple linear functions. That is, the price of apples is given by one linear function, and the 

price of bananas is given by another linear function. When you add these two functions 

together, you get the linear combination in (1). It is important to understand that a linear 

combination is a generalization of the linear function f (x) = a x to multiple variables. 

 

 

8.2 Multiple Linear Combinations 

Let’s say we start a business where we make teddy bears, as shown below. Each teddy bear 

has a head and a body. The head is made with cloth and buttons. So is the body — not very 

attractive, eh, but work with me here. I am trying to explain math; not how to make hand 

craft to sell online.  

 

 

Say that the cost of a button is $0.50, and a square piece of cloth is $1.10. We need 5 

buttons and 6 squares of cloth for the head. Therefore, the combined cost to create head is 

(in $): 

 

A linear combination is a generalization of the linear function f(x) = ax 
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Similarly, if we need 7 buttons and 8 squares of cloth for the body, the combined cost to 

create the body, (in $): 

  

 

Now, we have two linear combinations. Not just one! The cost to create the teddy bear is 

the “cost of head” plus “cost of body” but we want to track these two costs separately, 

because we may change how the head or the body is made — e.g., we may switch to five 

buttons for the body instead of seven.  

 

Thus, we track these two costs as a sequence of two numbers (called a 

vector in R2, because it has two scalar components). Remember, we 

looked at vectors, specifically algebraic vectors in Rn, in the previous 

chapter. Remember, we use numbers to represent objects. In this case, 

we need more than one number to represent the cost of a teddy bear, if 

we want to track the cost of the head and the body as two separate 

costs. At the same time, the two numbers are related. They belong to 

the same teddy bear. Therefore, we want to keep the two numbers (costs) grouped as a 

single unit. This group of numbers (in a given order) is a vector, as shown to the right, as a 

single column. In our case, since it represents two different costs, we call it the “cost 

vector”. Each cost (for head or body) is called a component of that cost vector.  

 

 
 

To come up with our cost vector, we grouped the outputs of two linear combinations 

(functions) for the head and the body together. Remember, we need two functions to 

produce two outputs, because a function can produce only one output. However, these two 

functions (linear combinations) are closely related because they represent how to obtain 

A Group of Numbers (in a specific order) is a Vector 
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the cost of one teddy bear (i.e., a recipe for producing the cost of a teddy bear). Moreover, 

these two functions have the same two inputs — the cost of a button and the cost of a 

square (piece of cloth). So, can we keep these two functions together as a single 

relationship (or a single recipe)? To answer that question, let’s take another look at our two 

linear combinations (functions) together: 

 

 

If you look at the above two linear combinations carefully, you should see that the “cost of a 

button” (green-filled box) and the “cost of a square” (blue-filled box) appear in both 

equations. In simple algebra, what do we do when we have a common term appearing 

multiple times? You guessed right: we factor it out. We can do the same thing here, using 

the following notation.  

 

 
The above is called the “matrix form” of the two linear combinations, because we have this 

new object with 4 components, called a “matrix”. Before we find out exactly what a matrix 

is, pay careful attention to how we got this matrix form from our two linear combinations. 

Given a matrix form like this, understand what needs to be done to get the original two 

linear combinations. It is very important to understand this point: this matrix form is 

another way to write our two linear combinations, and hence, we should be able to go back 

and forth from one from to the other easily.  The following figure shows exactly how that is 

done. The first column shown in green-outlined boxes (i.e., number of buttons), needs to be 

multiplied by the green-filled “cost of a button”. Similarly, the blue-outlined boxes in the 

second column need to be multiplied by the blue-filled box labeled the “cost of a square”. It 

is really important to see that we multiply the same way we factored them out.  
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Before we go further, let’s look at the matrix form with actual values: 

 
 
When you look at the above matrix form, you should immediately notice one thing: how the 

“cost of a button” and “cost of a square” got separated as a vector (on the right). At the same 

time, the resulting matrix in the middle, has all of the “number of units” (i.e., number of 

buttons and squares of cloth) in its entries. The output vector on the left is the cost vector, 

and has “combined costs” (or “total costs”) resulting from each linear combination.  

 

The most important thing to notice is that how the original two linear combinations 

(functions) got separated as a product between a matrix that represents “number of units” 

and a vector that represents “unit costs” (i.e., the cost of a button and the cost of a square). 

We can express this relationship as v = A u, as shown below. Remember, we represent 

vectors with bold letters to indicate that they are not just numbers, but rather, an ordered 

set of numbers. 
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This separation as a product is not surprising given that the original linear combinations 

calculated the same product. That is, it multiplied the “number of buttons” by the “cost of a 

button” to get the cost of all buttons (for head or body). Then, it added that with the cost of 

squares, which is calculated using a similar product. The above matrix-vector product 

captures both of these linear combinations succinctly. The way we calculate this product 

(linear combination) for the body of the teddy bear is shown below. This product has a 

name: dot product. In matrix form, the dot product is taken between a row of the matrix 

and an input vector as shown below.  In our example, the dot product has two 

multiplication and one addition operation (i.e., a linear combination). 

 

 

As you can clearly see, the dot product is just a fancy name for calculating a linear 

combination. Thus, “taking the dot product” is essentially “calculating a linear 

combination”. As shown above, the dot product produces one single scalar value, which is 

$12.30, in this example. 

 

The computer code below shows how to multiply a matrix and a vector. The function 

accepts the two rows of a 2×N matrix, and an input vector of length N. The first statement in 

the function creates a new output vector, which will be returned as the output of this 

function. It has only 2 entries, because the matrix has only 2 rows. The first entry (in fact, 

the 0th entry, because computers start counting from 0 instead of 1), is evaluated using the 

dot product between row1 and the input vector, vec. Similarly, the next entry in the output 

vector is the dot product between row2 and input vector. Recall that we wrote the function 

dotProduct in the previous chapter in Section 7.10.2. 
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In the second block of the computer code, we call the function we defined. We use the 

matrix and input vector we used for the teddy bear as inputs to this function. The print 

statement should print the same costs we saw above. Notice that N is 2 in this example 

because we had only two columns in the matrix. However, N can be any number, and the 

length of each row and the input vector must also be N. Notice that we use arrays for rows 

as well as the input/output vectors, which are actually columns, because you can look at a 

row or a column as just a vector (a sequence of numbers). 

 

 
 

The computer code clearly shows how each entry of the output vector is calculated — as a 

dot product (a linear combination) between a row of the matrix and an input vector. You 

should clearly understand this computer code before we move on because it nicely 

summarizes what we learned so far. 

8.3 What Does a Matrix Represent? 

Let’s take another look at our multiplication of matrix A by the “unit cost” vector, u, to 

produce the “combined costs” vector v. Assume that the “unit costs” are variable. That is 

the cost of a button or the cost of a square (of cloth) can increase or decrease.  

 
 
 
 

function matrixVectorProduct2xN( row1, row2, vec, N )  
{ 
 output_vec = new Array[2]    // create new output vec 
   
 output_vec[0] = dotProduct( row1, vec, N ) 

 output_vec[1] = dotProduct( row2, vec, N ) 
 
 return output_vec 
} 
 

row1 = [5,6]       // row 1 of matrix  
row2 = [7,8]       // row 2 of matrix 
in_vec = [0.50, 1.10]      // input vector 
 
out_vec = matrixVecProduct2xN( row1, row2, in_vec, 2 )  
 
print( out_vec )            // prints 9.10 12.30 

A row or a column of a matrix is a vector 
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To understand what a matrix represents, first, let’s look at scalar multiplication function, 

multiplyByScalar_a( x ). Let’s define it as: 

 

 multiplyByScalar_a( x ) = a ∗ x  [ e.g., y = 5x ]   (1) 

  
In function multiplyByScalar_a( x ), number a serves as the scalar multiplier or the scalar 

coefficient (to multiply any input with). In other words, scalar a (e.g., 5) fixes one input to 

multiplication. Therefore, the other input always gets multiplied by a. In other words, 

number a “configures” or “sets-up” the multiplication operation so it behaves in a certain 

way. Similarly, let’s look at a scalar linear combination, or dot product, called 

multiplyByVector_a( x ) as: 

 

 multiplyByVector_a( x ) = a · x  [ e.g., y = 5x1 + 3x2 ]   (2) 

 

Note that both a and x are vectors. Vector a is a constant vector. It is the vector multiplier 

(or vector coefficient) for input vector x. We “multiply” (i.e., take the dot product 

between) the vector coefficient and the input vector to produce a scalar output. Similarly, 

we can write a function multiplyByMatrix_A. We can define that as: 

 

 multiplyByMatrix_A ( x ) =  A x  [ e.g., y = Ax ]   (3) 

 

where, x is the input vector. In function multiplyByMatrix_A ( x ), matrix A serves as a  

Matrix Multiplier (or a Coefficient Matrix) to “multiply” the input vector with. Notice that 

as in (2), “multiplying” means taking dot products. However, unlike in (2), we have to take 

multiple dot products, because output y is a vector. The matrix A provides a set of vector 

coefficients so we can take dot products with any input vector to produce an output vector. 

Therefore, matrix A captures our two linear combinations. That’s what a matrix represents. 

 

 

 
A matrix captures multiple linear combinations 
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Let’s take a minute to notice the similarity between (1), (2), and (3). All three are 

multiplication operations taking two inputs and producing one output. However, (1) has 

scalar inputs and a scalar output, (2) has vector inputs and a scalar output, and (3) has one 

vector and one matrix input producing a vector output. That is, all three are multiplication 

operations designed for different inputs and outputs.   

 

By itself, a matrix is not a function. However, as we now know, a linear combination is a 

function. The matrix “configures” linear combinations by providing the multipliers or 

coefficients. For instance, consider (1): 

 

  f (x) = a x  or  multiplyByScalar_a(x) = a x 

 

What’s the role of a? Value a is the coefficient of multiplication. Graphically, it specifies the 

slope of the line. Geometrically, ‘a’ specifies, by how much input x is scaled (or amplified). 

Not only that. If ‘a’ is negative, it could cause reflection of input. If ‘a’ is complex, it could 

cause rotation. Similarly, matrix A can do similar things to an input, which is a vector in this 

case. So, we can represent it as: 

 

  f (x) = A x  or multiplyByMatrix_A(x)  = A x 

 

That’s what we mean when we say matrix A acts as a multiplier (or a coefficient) for the 

“multiplication function” (dot products). This is what we modeled as v = Au above where u 

is the input “unit cost” vector, v is the output “combined costs” vector, and A is the matrix 

specifying coefficients (numbers of buttons and squares).  

 

The coefficients in the matrix determines the exact multiplication function used for the 

input vector. Note that, in the context of matrices, the word “multiply” means taking all the 

dot products (calculating linear combinations).  One other caveat: when we name a 

function multiplyByMatrix_A, it means to use A as the first input into multiplication (i.e., 

pre-multiply). You will see the importance of this shortly. 

 

The following Visual Models should make the role of a matrix perfectly clear.  
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Before we discuss the Visual Model, we should clarify some terminology. A function can 

accept different types of inputs. It can accept real numbers (scalars) and produce a scalar 

as output. We call such a function a scalar-function. For instance,  f (x) = 5x is a scalar 

function. A function can also accept a vector (a sequence of numbers) as input and produce 

a vector as output. Such functions are vector functions. Multiplying by a matrix represents 

such a vector-function. 

 

Now, let’s start with the first Visual Model on the left. This models our two linear 

combinations as a single relationship. The scalar variables b and s represent the “unit cost” 

of a button and a square, respectively. The outputs costh and costb represent the cost of 

the head and body, respectively. As you can see, this represents two linear combinations 

(dot products), since we have two outputs.  Therefore, we have two separate recipes: 

recipe 5b+6s to calculate the cost of producing the head, and 7b+8s to calculate the cost of 

producing the body. Although we have two linear combinations, note that both of them 

depend on the same inputs, b and s. That’s why these two linear combinations are related. 

 

The most important thing to observe here is that the Visual Model on the left is equivalent 

to the one in the middle, which is the matrix representation of the same two linear 

combinations. By comparison, you can see that the product Au (matrix A multiplied by 

input vector u) calculates the same outputs (in vector form), and hence represents a 

vector-function. For instance, to make our teddy bear, we have one linear combination to 

make the head and another to make the body, using the same inputs (buttons and squares). 

The equivalent vector-function accepts a vector as its input and produces a vector as its 

output. It can do so because it contains two separate linear combinations to create each 

scalar output.  
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The Visual Model on the right captures our example 

with numbers for matrix A, input vector u and output 

vector v. Sometimes, it may be easier for you to 

visualize the entire relationship between input, output, 

and matrix, if the outputs are shown on the side, 

instead of on the bottom, as shown with the Visual 

Model. If you take the dot product between the input 

and top row, you get the top output. That is,  5∗0.50 

plus 6∗1.10 produces 9.10. If you take the dot product between the input and the bottom 

row, you get the bottom output. This is an easy way to remember how to do the actual dot 

products. Remember, this reflects how we factored out the two linear combinations in the 

first place, to produce a matrix and a vector.  

8.4 Modeling with a Matrix 

Let’s summarize what we achieved so far. What did we really achieve? We built a cost 

model for making a teddy bear. That cost model is captured by the simple matrix equation, 

v = Au, where u is the input “unit cost” vector and v is the “combined cost” output vector, 

as shown below. With this model, we can calculate the costs for making the head and body 

of a teddy bear, for given “unit costs” (cost of one button and cost of one square). 

 
When modeling the cost of making a teddy bear, matrix A represents how components 

(buttons and squares of cloth) are combined to make either the head or the body. It 

specifies that the head needs 5 buttons and 6 squares of cloth (1st row of the matrix), and 

the body needs 7 buttons and 8 squares of cloth (2nd row of the matrix).  

 

Our matrix A is called a 2×2 matrix since it has two rows (calculates two linear 

combinations) and two columns (accepts input vectors with two components). In other 

words, it accepts vectors with two components and produces output vectors with two 

components, and thus describes two linear combinations of two input variables.  A more 

general matrix is an m×n matrix, which has m rows (m linear combinations) and n columns 

(accepts inputs vectors with n components). Therefore, it captures m linear combinations, 

each with n input variables. 
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To summarize, the following figure shows how we use a matrix to model a linear 

relationship with two outputs and two inputs. As an example, coefficient out1Cin1 gets 

multiplied by input1 and contributes to output1. As you can see, coefficients in the 1st 

column of the matrix get multiplied by Input1, and coefficients in the 2nd column get 

multiplied by Input2. Similarly, coefficients in the 1st row of the matrix contribute to 

Output1, whereas coefficients in the 2nd row contribute to Output2. This clearly shows how 

a matrix is used to model a linear relationship with two outputs and two inputs — that is, a 

relationship between an input vector and an output vector. 

 

 
We looked at what a linear combination is. We should also keep in mind what it is not. A 

linear combination cannot do any non-linear operations on its input. For instance, a linear 

combination cannot square or cube an input. Therefore, a matrix, which describes a set of 

linear combinations, cannot perform non-linear operations on input.  

 

Now, you should be able to look at a matrix in this new light — a matrix provides 

multipliers (or coefficients) to linear combinations. The multipliers in the matrix describe 

how much of each component in the input is used to produce a component in the output.  

 

 

An m×n matrix captures m linear combinations of n input variables 
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8.4.1 EXTENDING LINEAR MODELS 

When we examined our function toolbox, the first thing we looked at was the linear 

function 

 y = a x  or   f (x) = a x     (1) 

where x is a scalar variable, a is a scalar coefficient, and y is a scalar output. Compare this 

with the matrix model we just saw: 

 v = Au  or  f (u) = Au     (2) 

or, if we use the same variables as in (1) 

 y = Ax  or  f (x) = Ax     (3) 

 

In (3), the input variable x is a vector, output variable y is a vector and the coefficients 

(multipliers) are provided by matrix A. What does this tell us? Models (1), (2) and (3) are 

all linear relationships. Model (1) is a linear relationship between a scalar input and a 

scalar output. Here, just a simple scalar multiplier (coefficient) does the job. Model (2) is a 

similar linear model, but the relationship is between a vector input and a vector output. 

However, a simple scalar multiplier is not sufficient in this case. We need a matrix to supply 

multipliers for this linear relationship, because this model captures multiple linear 

combinations — one linear combination for each output component.  

8.5 Matrix Multiplication 

So far, we learned what a matrix represents and how to multiply a 2×2 matrix by a 2×1 

vector (an input with two components). Now, we want to see how to multiply a matrix by 

another matrix, and what it means.  

 

Earlier, we saw that a matrix can multiply one input vector. Well, if it can multiply one 

input vector, it can multiply two, three, or any number of input vectors. That’s pretty 

straightforward. One such example is given below. Assume that, instead of one teddy bear, 

we package two teddy bears, a girl bear and a boy bear (say for Valentine’s). We use the 

same number of buttons and squares for both bears. The only difference is that the buttons 

and squares (of cloth) for the girl bear have different costs (because of different materials). 

To represent these different costs, we need to add another input column vector. As a result, 

our output also ends up with 4 linear combinations — one column for the boy bear and one 

column for the girl bear. What you have below is one matrix multiplied by another matrix. 

You need 4 dot products (linear combinations) to calculate the final output.  
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Can you write the four linear combinations to calculate the output matrix? You already 

know how to write two linear combinations for the boy bear. You can do the same for the 

girl bear, except one thing: you have to use the girl column in input matrix B. That’s it. 

Another shortcut people use to remember the order of multiplication is this: say we want 

to calculate the cost of the head of the girl bear (i.e., entry with $9.00). Which entry is that 

in the output matrix C? It is at row 1 and column 2. So, you just take the dot product 

between row 1 of matrix A and column 2 of matrix C. That’s it. 

 

The computer code below shows how we can compute the above matrix multiplication 

using two calls to our matrixVecProduct2xN function we defined above. We call that 

function once to calculate the output column for the boy bear, with matrix A and input 

vector for the boy as inputs. Then, we call that function again to calculate the output 

column for the girl bear, with the same matrix A but the input vector for the girl bear. The 

two output columns are printed, which prints the same values we calculated above. Please 

make sure you understand this example clearly, because it illustrates how you can easily do 

matrix multiplication using a computer.  

 

 
 

Matrix multiplication is really easy as we saw above — it’s just taking a bunch of dot 

products (i.e., calculating linear combinations).  Now, let’s take one last look at it to 

understand how to interpret the result we got. 

row1 = [5,6]     // row 1 of matrix  

row2 = [7,8]     // row 2 of matrix 
 
in_col1 = [0.50, 1.10]    // input vector 1 (boy) 

in_col2 = [0.60, 1.00]    // input vector 2 (girl) 
 
out_col1 = matrixVecProduct2xN( row1, row2, in_col1, 2 ) // for boy 

out_col2 = matrixVecProduct2xN( row1, row2, in_col2, 2 ) // for girl 
 
print( out_col1 )     // prints 9.10 12.30 

print( out_col2 )     // prints 9.00 12.20 
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Here is the meaning of each matrix: 

 

• Unit Costs (B): Contains cost of each “unit” (a button and a square). Columns are for 

boy and girl and the rows are for buttons and squares. 

• Unit Counts (A): Contains number of units (buttons and squares) needed. Columns 

are for the buttons and squares and rows are for the head and the body. 

• Combined Costs (C): Contains the combined costs (cost of a head or a body). 

Columns are for the boy and girl and rows are for the head and the body. 

 

As you can see, two factors of the product (matrix A and B) contain information about a 

“unit” (buttons and squares) – i.e., how many of them are needed for the head and the body 

and cost of each for the girl and boy bear. The result of multiplication (matrix C) combines 

those two to produce the cost of each part (head or the body) of each bear (girl and boy). 

 

The above matrix multiplication is analogous to a scalar multiplication case where we have: 

 

 Cost of a bag of candy = Number of candies in a bag  *  Cost of one piece of candy  

 

The difference in the case with matrices is that, we can track multiple such costs and unit 

types in a matrix and perform all those cost calculations simultaneously with a single 

matrix multiplication! That’s because matrix multiplication evaluates multiple linear 

combinations simultaneously. That shows that matrices and their associated operations 

can represent much richer relationships than simple scalar values and their operations.  

 

8.6 Matrix Multiplication as Function Composition 

In this section, we are going to look at matrix 

multiplication as function composition. Before we go 

there, I want to remind you that scalar multiplication 

can be thought of as function composition as well. 

Consider the following function: 

 

  f (input) = 5 ∗ 3 ∗ input 

 

With function composition, the above can be written as: 

 

  f (input) = multiplyBy5( multiplyBy3( input ) ) 

Matrix multiplication evaluates multiple linear combinations simultaneously 
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First, we multiply the input by 3, and then, we feed that result into a function that 

multiplies its input by 5, as shown by the Visual Model. This function composition is equal 

to: 

 

 multiplyBy15(input) = 15 ∗ input 

 

To make this even clearer, the computer code for this composition is given below: 

 

We can show that the same function composition 

applies to the product of matrix A and matrix B, as 

shown by the Visual Model.  

 

To do that, first, we need to multiply the matrix 

product AB by an input vector x and note the result. 

Then, we have to multiply matrix B by the input 

vector, to produce Bx, which is a single column 

vector, and then multiply matrix A by this result Bx 

and compare that with the previous result.  

 

You can easily do that with the girl and boy bear example we looked at before. As shown 

below, apply input vector x to each side and verify that you get the same result. I leave it as 

an exercise for you to try. Remember, to apply x first to B when evaluating the right side. 

function multiplyBy5( input )  
{ 
 result = 5 * input 

 return result 

} 

function multiplyBy3( input )  
{ 
 result = 3 * input 

 return result 

} 

function multiplyBy15( input )  
{ 
 result1 = multiplyBy3( input ) 

result2 = multiplyBy5( result1 ) 

 return result2 

} 
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The Visual Model to the right shows how 

matrix multiplication is equivalent to function 

composition. If we treat multiplying by a 

matrix as a function, multiplying by a product 

of two matrices represents another function, 

which is equivalent to the composition of two 

functions.  

 

This has significant implications in matrix 

algebra. For instance, we know that function 

composition is not commutative, in general. 

That is, function f feeding into function g is 

not equivalent to function g feeding into f. 

The same applies to matrix multiplication. 

Matrix multiplication is not commutative either. That is, 

 

 AB ≠ BA 

 

As an exercise, use our matrices A and B to calculate the product BA. You can immediately 

see that we don’t get the same numbers nor, components with the same meaning.   

 

This is one area where matrix multiplication differs from scalar multiplication. As we all 

know, scalar multiplication is commutative. That is, we can switch the order of two inputs 

to scalar multiplication operator. At the same time, we showed that scalar multiplication 

can be thought of as function composition, too. Why does one function composition (scalar 

multiplication) preserve commutative property while another function composition 

(matrix multiplication) does not? Here is a hint: matrix multiplication is not really 

“multiplication”. Can you guess now? Matrix multiplication carries out a bunch of dot 

products, or linear combinations. When you calculate the matrix product AB, the rows of A 
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get multiplied (linearly combined) by columns of B. When you calculate matrix product BA, 

the rows of B get linearly combined with columns of A. As you can see, the linear 

combinations we form to calculate AB are very different from the linear combinations we 

form to calculate BA. There is no such a difference in scalar multiplication — you multiply 

the same two inputs together regardless of their order.  

8.7 Row View vs. Column View of a Matrix 

Recall how we calculated the total cost of a teddy bear using the model v = Au, where u is 

the input “unit cost” vector, v is the output “total cost” vector, and matrix A represents the 

number of buttons and squares used for the head and the body.  

 

 
We used two linear combinations to calculate each component of the output as: 

  

 9.10 =  5 ∗ 0.50 + 6 ∗ 1.10     

and 

 12.30 = 7 ∗ 0.50 + 8 ∗ 1.10     

 

Or, using dot products, we can write each output as a dot product between each row of 

matrix A and input vector, as follows: 

 

   9.10 = (5, 6) · (0.50, 1.10) 

 12.30 = (7, 8) · (0.50, 1.10) 

 

For instance, the row vector (5, 6) is the 1st row of matrix A. The above can be written as: 

 

 v1 = r1 · u        (1) 

 v2 = r2 · u        (2) 

 

where r1 and r2 are the 1st and 2nd rows of matrix A, respectively and v1 and v2 are the 

components of vector v. Here, we focus on how each component in the output vector v got 
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produced, as a dot product between a row of the matrix and the input vector, u. This view 

is called the “row view” because we look at each row of the matrix A at a time.  

 

However, there is an alternative way to look at the same model v = Au, using columns of 

the matrix A, as shown below.  

 

 
In this view, we look at the output vector v as a linear combination of two input vectors c1 

and c2, where c1 and c2 are columns of matrix A, as shown above. In other words, we have: 

 

 v = u1 c1 + u2 c2       (3) 

 

Notice that u1 and u2 are just scalar components of the input vector u, where u1 is the cost 

of a button and u2 is the cost of a square. Notice that when we multiply a column vector by 

a scalar coefficient, each entry in the column vector gets multiplied by the scalar coefficient. 

In other words, the column vector gets “scaled”, or magnified. Therefore, this “column view” 

tells us the following: each column of the matrix gets scaled by a component of the input 

vector, and those scaled column vectors are added together to produce the output vector. 

From a 2D geometric viewpoint, the following figure shows how column vectors c1 and c2 

get scaled by u1 and u2 and added together to produce vector v. 

 

 

 

Both the row view and column view are equally valid, and produce the same output in the 

end. Notice that both forms are linear combinations, but (1) and (2) are linear 
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combinations between scalar components (dot products), each with a scalar result, 

whereas (3) is a linear combination of vectors, with a vector result. 

 

The “row view” focuses on how each component of the output vector gets made, whereas 

the “column view” focuses on how each component of the input vector contributes to the 

output vector.  

8.8 Linear Transformations 

If you have ever played any computer game, you have seen objects on the screen move, 

grow, shrink, stretch, and rotate, as you play the game. How do you actually do that? If an 

object is composed of line segments, it becomes a matter of moving, growing, stretching, 

and rotating these line segments. What’s a good model to do that? As you know, we can 

model line segments with vectors. Great! Now, how do we manipulate these vectors so that 

they grow, stretch, rotate, etc.? To do that, we need to produce an output vector from an 

input vector. Luckily, we know one way to do that: matrices. So, let’s see how we can do 

that.  

Assume you have a line segment drawn in a 2D Cartesian plane, starting at the origin and 

ending at coordinates (5, 3). Now, we can use these coordinates as our input vector. It has 

two components, and hence, the vector is in R2. Let’s say we want to grow (scale) this line 

segment, in both x and y directions, by a factor of two. To generalize, let’s say our input 

vector is (x, y), and the output vector is (x’, y’). So, we can write the two relationships for x’ 

and y’ using two inputs x and y: 

 x’ = 2x     [ scales x input by two ] 

 y’ = 2y     [ scales y input by two ] 

For instance, if (5, 3) is our input vector, our output vector is (10, 6). Since x’ and y’ are 

functions of two variables, x and y, we can generalize the above two equations as two linear 

combinations: 

 x’ = 2x + 0y    [ x’ is twice of x (and no y) ] 

 y’ = 0x + 2y    [ y’ is twice of y (and no x) ] 

We know how to write these two linear combinations in the matrix form:  

[
𝑥′

𝑦′
] = [

2 0
0 2

] [
𝑥

𝑦
] 

The above matrix relationship is known as a linear transformation, because it’s a linear 

model of the form 
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 x’ = Ax 

 

The above is similar to the model v = f (u) = Au that we have encountered before. It 

“transforms” an input vector to an output vector. So, if you had 10 such input vectors on 

your screen, what would you do to grow them by 2X in each direction? You guessed right. 

We transform each of these vectors using our “transformation matrix”, A. In other words, 

we multiply matrix A by input coordinates to calculate the output coordinates. This is the 

basis of a linear transformation.  

Notice that we can model an object as a bunch of vectors, where each vector is grounded at 

the origin. If we transform all of these vectors using the same transformation matrix, we 

are essentially transforming the entire object.  

Quick quiz: what is the transformation matrix you would use if you wanted to stretch an 

object in x direction by 2, but no change in the y direction? We can model this using the 

following two linear combinations.  

 x’ = 2x + 0y 

 y’ = 0x + 1y 

The computer code to do this transformation is given below, using the same matrix 

multiplication function we used before. Since this code is very similar to previous 

examples, you should be able to understand it clearly.  

 

 
What if we wanted to get the same object, without any change? That’s basically the 

following matrix. It is known as the identity matrix, because its output is exactly the same 

as its input. Therefore, this transformation is called the identity transformation. 

  x’ = 1x + 0y 

 y’ = 0x + 1y 

Instead of stretching our line segment, what if we wanted to reflect it around the y-axis? 

We just have to negate the x coordinate: 

 x’ = -1x + 0y 

row1 = [2,0]       // row 1 of matrix  

row2 = [0,1]       // row 2 of matrix 

in_vec = [10, 15]         // input vector  
 
out_vec = matrixVecProduct2xN( row1, row2, in_vec, 2 )  
 
print( out_vec )            // prints 20, 15 
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 y’ =  0x + 1y 

What if we wanted to rotate by 1800? We have to negate both coordinates. Remember, 

negation is rotation by 1800. 

 x’ = -1x + 0y 

 y’ =  0x − 1y 

Similarly, you can perform rotation by any arbitrary angle t counter-clockwise, with 

 x’ = x cos(t) – y sin(t) 

 y’ = x sin(t) + y cos(t) 

where sin(t) and cos(t) are constant scalar multipliers. In general, in a linear 

transformation, we produce each output coordinate using input coordinates. Thus, we can 

write: 

 x’ =  f (x, y) 

 y’ = g (x, y) 

where f and g are linear combinations (linear functions of multiple input variables). Now 

we know how to model such a set of linear combinations — with matrices.  

8.8.1 PERFORMING MULTIPLE TRANSFORMATIONS AT ONCE 

What if we wanted to do two transformations at once? Well, say we want to stretch our line 

segment in the x direction by a factor of two and rotate it by 1800. What we are essentially 

doing is performing one transformation and then feeding that output into the next 

transformation. What is this called? It is called function composition. But wait! How do you 

do function composition with matrices? As we saw before, this is matrix multiplication. 

Remember, if we have two transformations represented by matrices A and B as follows: 

 v = Au     [ first transformation: input u, output v ] 

 w = Bv    [ feed v into second transformation, to get w ]  

If we substitute for v in the second transformation, we get: 

 w = B(Au)  

We can write this as: 

 w = C u 

where C = BA. 
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This is matrix multiplication, as we saw before. This is exactly why we looked at matrix 

multiplication as function composition. Therefore, if you have to apply multiple 

transformations to an input object, you can multiply those transformation matrices 

together to come up with a single transformation matrix capturing all those 

transformations. 

As an exercise, combine a stretching transformation and rotation transformation by 

multiplying the transformation matrices and verify that you get the combined 

transformation using the resulting matrix.  

This should justify the time we spent learning matrix multiplication. As you can see, matrix 

multiplication allows us to combine many linear transformations into a single 

transformation. You can look at it the other way around too. If we were given matrix C 

above, we could decompose it into two simpler transformations represented by A and B.  

The following figure shows how a linear transformation can both stretch and rotate and 

input image to produce an output image.  

 

 

Because of this ability to transform objects, matrices are heavily used in computer graphics. 

Even the font you see on your computer or smartphone screen may be modeled using 

vectors for the same reason. When you zoom in or increase your font size, you may be 

doing a matrix transformation.  

The next time you play a computer game, or even zoom in a document you read, remember 

that it is made possible by matrices and vectors.  

8.8.2 MULTIPLYING BY A MATRIX AS TWO OPERATIONS IN ONE 

In Section 3.3.2, we saw how scalar multiplication was actually two operations — scaling 

(amplification) and reflection (rotation by 180 degrees). Matrix transformation captures 

the same two operations: scaling and rotation. With matrices, however, the rotation can be 

by any angle in multiple dimensions. Therefore, multiplying by a matrix can do two things 

to an input vector: 

 



241 
 

1) Scale the input vector (in each dimension) 

2) Rotate the input vector by any angle (in each dimension) 

It can be shown that this is all a matrix can do, when we multiply an input vector by a 

matrix. This is evident from the “column view” of the matrix we learned above. According 

to that view, an entry in the input vector can only scale the corresponding column vector of 

the matrix. Scaling each column vector of the matrix produces a set of scaled vectors. Then, 

we add those scaled vectors together, which amounts to rotation in each direction. The net 

result is equivalent to scaling with rotation.  

As a result, when we multiply an input vector by any matrix, scaling and rotation is all that 

can happen to that input vector. For instance, you cannot square the input by multiplying 

by a matrix. That’s why we call this a “linear” transformation.  

8.9 Solving Linear Models with Multiple Inputs 

From section 4.4.2.1, we know how to solve a linear model of one input, like 2x + 3 = 10. 

However, what if our linear model has multiple inputs? Many real-world situations lead to 

linear models with multiple inputs, but just to understand the concept, let’s look at a silly 

problem first.  

 

Let’s say there is a store selling fruits, but only 3 kinds — apples, bananas, and cantaloupes. 

They sell really good fruits at very cheap prices, but they have some weird business 

practices. First, you can buy any amount of each fruit, but you must buy at least one of each 

type. Second, the store does not have prices marked for any of the 3 fruits. If you grab some 

fruits from each type and take them to the cashier, she only tells you the total price. You are 

really annoyed by this practice (who wouldn’t be?). So, you want to find out the price of 

each fruit. How do you do that?  

 

You come up with a strategy. You buy 3 bags of fruits at 3 different times. You take each bag 

to the cashier and pay the total price. You know the number of fruits in each bag and the 

price you paid, so you can model the 3 bags: 

 

2 apples, 3 bananas, 1 cantaloupe ⇨ $10 

3 apples, 2 bananas, 2 cantaloupes ⇨ $14 

5 apples, 3 bananas, 3 cantaloupes ⇨ $22  

 

Let’s say the price of an apple, a banana, and a cantaloupe in dollars is x1, x2, and x3 

respectively. Now, we can write an equation for the total price of each bag as follows: 
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 2x1 + 3x2 + 1x3 = 10 

 3x1 + 2x2 + 2x3 = 14 

 5x1 + 3x2 + 3x3 = 22 

 

A set of equations like the above 3 equations is called a system of equations. If you look 

carefully, you should immediately see that each equation is a linear combination. 

Therefore, they are called a system of linear equations. 

8.9.1 SOLVING A SYSTEM OF LINEAR EQUATIONS  

When there are multiple linear combinations, now we know exactly how to model such a 

relationship. If you forgot how we did this for 2 linear combinations, please refer to Section 

8.2, where we represented the cost of making a teddy bear. We can model multiple linear 

combinations with a matrix, with the matrix representing the multipliers (coefficients) and 

an input vector representing the input variables.  

 

 
The above is the matrix representation of the system of linear equations for our fruit 

puzzler. By taking the linear combinations, you can verify that this matrix equation gives 

the same 3 equations we have above. This matrix model can be represented succinctly as: 

 

A x = b      (1) 

 

where A is the coefficient matrix, x is the vector representing the price of each fruit, and b 

is the constant vector representing the total price of each bag.  

 

We have to find x, the “unit price vector” of fruits, given b, the “total price vector”, and the 

coefficient matrix A, which represents the quantity of each fruit.  

 

How do we find x using the above matrix equation? Conceptually, it is quite easy. How do 

we solve a linear equation of the form a x = b? We express it as: 

 

 x = b/a,  

or 
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 x = a 
-1 ∗ b, where a 

-1 = 1/a 

 

Notice that a 
-1 is the reciprocal (or multiplicative inverse) of a. Similarly, we can write (1) 

as: 

  x = A-1 b 

 

where A-1 is the multiplicative inverse of matrix A (which is commonly referred to as just 

“inverse of A”). However, finding A-1, is a topic for Linear Algebra, a topic that we will not go 

into. You can find x through a process called Gaussian Elimination, which indirectly 

evaluates A-1. If you did that, you would find that x = (2, 1, 3). In other words, an apple costs 

$2, a banana costs $1, and a cantaloupe costs $3. Not exactly cheap as the store would like 

us to believe.  

 

Whenever we have a linear model with N inputs (variables), we need N output values to 

find the inputs that produced those outputs (i.e., to solve for input), as we saw in the above 

example. Each output value leads to one linear combination. We can model the resulting set 

of linear combinations using matrices.   

 

This is another example of a real-world use of matrices. Systems of linear equations are 

quite common in many fields of engineering and sciences. For instance, in electrical 

engineering, the relationship between the current, voltage and impedance in an entire 

circuit with a large number of components can be readily modeled using a system of linear 

equations like the one given above. Similarly, in structural engineering, you can model the 

forces acting on a connected structure in the same way.  

 

There is one other advantage to expressing a system of linear equations this way: once you 

express your system of equations as a matrix model, you can readily use computers to solve 

it.  Therefore, even if you haven’t heard a word about Gaussian Elimination, if you can 

model a real-world problem as a matrix equation like the one shown above, you can solve it 

using a computer. That’s the power of modeling. And, now you know how to model a 

system of linear equations using a matrix. That’s what I want to emphasize in this book. 

Once you have a mathematical model, even a dumb computer can solve it. 
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8.10 The Story So Far 

In the function dynasty, linear combinations play a special role. A linear combination is just 

a linear function with multiple inputs, producing just one output. However, what if we 

wanted a linear model that produces multiple outputs (i.e., a vector output) using multiple 

inputs (i.e., a vector input)? We use matrices to build such models. The whole point of a 

matrix is to help linear combinations transform an entire input vector to an output vector.  

Why do we need all of this? Can’t we live without matrices? Remember, the whole point of a 

function, or a model, is to produce output from input. We need to develop different models 

to produce different types of output for given inputs. For instance,  f (x) = x and g (x) = 5x 

produce different outputs for the same input, and hence, model two different relationships. 

Similarly, we need different linear models producing different outputs for the same vector 

input. To do that, we need matrices. By changing the matrix, we can model different linear 

relationships. 

A matrix provides the multipliers (coefficients) necessary for a linear transformation, 

which is a function for producing an output vector from an input vector. The same matrix 

can be used to perform the same transformation on a large set of input vectors. For 

instance, any set of points in 3D space (e.g., a 3D object) can be transformed to another set 

of points using a matrix. Any such transformation can perform both scaling and rotation of 

input vectors. Further, if we want to apply multiple matrix transformations all at once, we 

can use matrix product to combine all of our individual transformations into a single 

transformation matrix that captures all of our transformations.  

A system of linear equations also models a linear relationship between an input vector and 

an output vector. Thus, a matrix equation of the form A x = b helps us model those multiple 

linear equations at once, allowing us to obtain solutions to that system.  

I hope this chapter helped you understand the important role that matrices play in 

modeling real-world relationships.  
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9 SUMMARY: FUNCTIONS IN PERSPECTIVE 

Chapter Overview: This chapter helps you create a coherent view of all the concepts we 

have seen in this book and how they are related to each other. 

Traditionally, math, especially Algebra, is taught as an aggregation of a lot of things, which 

could seem quite unrelated to most students. It causes students to think, “What’s the 

meaning of all these random things I am learning?”, or  “Why am I learning about these 

crazy things called complex numbers and matrices?” I am glad you asked that question, 

because I am about to reveal … 

9.1 The Meaning of Life, err…, Math 

Everything we looked at in this book falls under one theme: how we can use math to model 

the real world. In other words, we look at math as a tool for modeling the real world. Just as 

architects build models of buildings, mathematicians build models of the real world using 

mathematical relationships (functions).  

 

 

Functions are the centerpiece of this modeling activity. They consume objects as input and 

produce objects as output. We pick these input and output objects based on what we want 

to represent, and then pick a suitable model to produce output from our input. So, let’s start 

by looking at … 

  

 f (x) = 2x
2
 + 3x 

g(x, y) = x
2
 + y

2
  

An Architect’s Model vs. a Mathematician’s Model 
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9.2 Objects  

Let’s start with the objects that we met in this book, starting with the simplest to the most 

elaborate: 

• Real numbers (scalars) 

• Complex (rotated) numbers 

• Vectors 

• Matrices 

 

A real number can model a 1D (scalar) object, with just one property. A complex number 

can model a 2D object (a rotated object) with two properties. A vector can model an nD (n-

dimensional) object, with n properties. A matrix can model an m×n dimensional object, 

which has m vectors, each with n properties. 

 

Now, you should see how these objects are related to each other. For instance, a real 

number is a degenerate (simpler) case of a complex number, which is, in turn, a simpler 

case of a vector, which in turn is a simpler case of a matrix. For instance, a vector with one 

component is a just a real number. Conversely, three real numbers can be represented as 

one 3D vector (a vector with 3 components). Thus, an algebraic vector is a generalization of 

a single real number. Similarly, a matrix consists of multiple algebraic vectors (multiple 

vectors in component form), and therefore, is a generalization of a vector.  

 

For modeling the real world, we have to pick the right object for the right job. For instance, 

to represent a scalar quantity like height, slope, distance, temperature, etc., a real number 

is sufficient. However, to represent a property like electrical impedance, we need a complex 

number that can represent a magnitude and a direction in 2D. To represent n different 

skills of a person, we need an n-dimensional vector. To represent n different vectors (e.g., 

to model how n different skills are valued in m regions), we need a matrix. Is the matrix the 

ultimate object? Not quite. If we continued this extension further, you would meet Tensors. 

Although we would not describe them in this book, you now have the required intuitive 

foundation to explore them.  

 

Now that we know what the above objects can represent, let’s look at … 

9.3 Functions 

Functions are the workers or artisans in the mathematical world. They produce output 

from input. In other words, a function models the relationship between input and output. 
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However, all functions are not created equal. Some are simpler than the others. One such 

simple family of functions is known as … 

9.3.1 LINEAR MODELS  

Out of all of our models, one of the simplest models is the linear function with one linear 

term: 

 y = a x         (1) 

We looked at this function in Section 4.1.1. This linear term has only 1 input variable. 

What’s the analogous linear model, when we have multiple input variables? Yes, it’s a linear 

combination of scalar inputs, which can be also modeled as a dot product. A dot product 

with just two scalar variables looks like: 

 y = a1 x1 + a2 x2 

    = a · x        (2) 

In the above linear combination, we take the dot product of two vectors: a constant vector 

a = (a1, a2), and an input vector x = (x1, x2), which yields the scalar result y. Remember, 

vectors a and x can have any number of components, in general. To summarize, a linear 

combination between two vectors, or a dot product, models a linear relationship between 

input and output, when the input is a vector and the output is a scalar.   

What if we want a linear model that produces a vector output for a vector input? We have it 

covered too. That’s where matrices come in. Why? In (1), we just needed one scalar 

multiplier (coefficient) to model a linear term. In (2), we needed a sequence (or a vector) of 

scalar multipliers (coefficients) to model the linear combination. If we have to produce a 

vector as output, we need one linear combination for each output component. Therefore, we 

need multiple vectors of scalar multipliers (coefficients) to model this relationship. An 

object with multiple vectors is represented by a matrix. Therefore, we can express such a 

relationship as: 

 y = A x        (3) 

Note that both x and y are vectors, and hence written, with bold symbols. A is a matrix. 

Compare (3) with (1) and (2), and you can immediately recognize the similarity in their 

form. All three are some form a product between an input and a coefficient, which is the 

hallmark of a linear relationship. 

All three models given above are linear relationships with different inputs and outputs, and 

they are summarized in the following table: 
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Single Output (R) 

(Scalar Output) 

Multi-Component Output (Rn) 

(Vector Output) 

Single (Scalar) 
Input (R) 

y = a x 

linear term  

(scalar multiplier a) 

y = a x 

linear scaling of a vector 

(vector multiplier a) 

Multi-component 
(Vector) Input (Rn) 

y = a · x 

dot product 

(vector multiplier a) 

y = A x 

linear transformation 

(matrix multiplier A) 

 

As the above table shows, when we have a scalar input, x, we get our simple linear function 

with one linear term:  

y = a x        (1) 

producing a scalar output, y. Here, coefficient ‘a’ is a scalar multiplier.  If we need to 

produce a vector output with a scalar input, we need a vector multiplier, leading to model  

y = a x       (2) 

which simply produces different scaled versions of the constant vector a. This model 

always produces a vector parallel to vector a, so it is quite simple.   

When we have a vector input, we have a linear combination between the components of 

the input vector x and the components of the constant vector multiplier a, producing scalar 

output as given by y = a · x. Remember, this is called a dot product (scalar product) and 

can be expanded as 

 y = a1 x1 + a2 x2 + …       (3) 

where coefficients a1, a2, etc. come from constant coefficient vector a, and scalar input 

components x1, x2, etc. come from the input vector x. 

If we want a linear relationship that produces a vector output y from a vector input x, we 

have the model y = A x, where A is a matrix. Therefore, A is a matrix multiplier in this 

linear relationship. As we saw in Chapter 8, this is just multiplying a matrix by an input 

vector. This model is sometimes referred to as a linear transformation, or a linear-map. 
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However, if we expand y = A x using the column vectors of A, which can be written as a1, 

a2, etc., we get the following linear combination of vectors with components x1, x2, etc. as 

our scalar coefficients.  

y = a1 x1 + a2 x2 + …      (4) 

Compare (3) and (4). Both are linear combinations. However, (3) is a linear combination of 

scalar components (a scalar product or dot product), whereas (4) is a linear combination of 

vectors. Whenever we have a vector input, we use a linear combination to produce a linear 

relationship.  

To examine this relationship further, we can look at (1), (2), and (3) as special (degenerate) 

cases of (4). We can look at (3) as a degenerate case of (4), where each vector a1, a2, etc. 

has just one element. We can take this observation a little bit further. If you look at (2), 

which models y = ax, it is just a degenerate case of (4), with just one term a1x1. Similarly, if 

you look at (1), which models y = a x, it is a degenerate case of (3), with one term, a1x1.  

What do all these observations tell us? They tell us that all of these models are linear 

combinations, in some form or another.  

 

   
As another interesting point, notice that how the multiplication function (operator) is used 

when the input is a scalar, but how multiplication gives way to linear combinations when 

the input is a vector. A linear combination can be thought of as a sum of simpler linear 

models. For instance, each term in (3) and (4) is a simpler linear model. 

You may have noticed that the general linear model has a constant term as well. For 

instance, the linear function y = a x + b has a constant term. This model is still a linear 

combination. For instance, we can get this linear model from (3), if we have x2 = 1 (i.e., the 

2nd input is a constant input). Then we get: 

 y = a1x1 + a2,  

which is same as 

 y = ax + b 

Similarly, we can extend our other linear models, as given in the following table: 

 

Every linear model is a form of a linear combination 
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Single Output (R) 

(Scalar Output) 

Multi-Component Output (Rn) 

(Vector Output) 

Single (Scalar) Input 
(R) 

y = ax + b y = ax + b 

Multi-component 
(Vector) Input (Rn) 

y = a · x + b y = A x + b 

 
Notice that, models with vector outputs have an additional constant vector as an offset. 

Models with a scalar output have an additional constant scalar as an offset. We have 

essentially added another input and another coefficient to each model, with one important 

detail — this input is always 1. This constant input “shifts”, “offsets”, or “biases” the model. 

For instance, when we have y = a · x + b, this is the same model as y = a · x, if vector a had an 

extra component, and input vector x had an extra component equal to 1. Similarly, y = A x + 

b is same as y = A x, if matrix A had an extra column and the input vector x had an extra 

row (with entry 1).  

Therefore, all of the above linear relationships are linear combinations in one form or the 

other. If you happened to look at each of these models as a separate concept, now you know 

how to unify them under one umbrella.  

However, what do we do when a linear model is insufficient to model the problem at hand? 

That takes us to … 

9.3.2 NON-LINEAR MODELS 

The table below shows the general models for the corresponding linear models we saw in 

the previous two tables. For example, the general model accepting an input vector x and 

producing a vector output y is a vector field. The linear model doing the same thing is just a 

linear transformation of the form y = A x. Notice that the example functions for vector 

inputs (and output) are given for 3 dimensional vectors — i.e., x = (x1, x2, x3).  
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Single Output (R) 

(Scalar Output) 

Multi-Component Output (R n) 

(Vector Output) 

Single (Scalar) 
Input  
(R) 

y = f (x)  

Scalar Function 

y = f (t) i + g (t) j + h (t) k 

Vector Valued Function 

Multi-component 
(Vector) Input  
(R n) 

y = f (x1,x2,x3) 

y = f (x) 

Scalar Field 

y = f (x1,x2,x3) i + g (x1,x2,x3) j + h (x1,x2,x3) k 

y =  f (x) i + g (x) j + h (x) k 

Vector Field 

 

You should be able to readily distinguish a linear model from a non-linear model (a general 

model). For example, if we are talking about functions accepting a single scalar variable and 

producing a scalar output,  f (x) = 3x2 + 1  is a non-linear function whereas  f (x) = 5x is a 

linear function. Similarly, if we are talking about functions with multiple scalar inputs 

producing a scalar output, f (x, y) = x2 + y2 is a non-linear scalar field whereas 

f (x, y) = 5x + 9y is a linear combination (linear version of a scalar field). Similarly, if we are 

talking about a function accepting vector inputs and producing vector outputs,  f (x, y, z) = 

5x2
 i + xy j + z k is a vector field, whereas  f (x) = A x is a linear transformation (linear 

version of a vector field). 

Why do linear models get special treatment? There is one simple answer: simplicity. If we 

can model a problem with a linear model, it is always much simpler than modeling with a 

non-linear model. Therefore, whenever possible, we try to build a linear model, even as an 

approximation, because it is much simpler to deal with compared to a non-linear model. 

However, sometimes, a linear model may not match reality. No matter how hard we try, we 

cannot model radioactive decay using only a linear model. In such cases, we need non-

linear models.  
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The above discussion should give you a cohesive view of functions. Whenever you meet a 

new function, try to fit that function into one of the models described here. First, look at its 

input and outputs. Are they scalar or vector? Is the model linear or non-linear? Answers to 

these questions should help you categorize the function properly, and get an intuitive feel 

for how it behaves. 

This summary of the linear and non-linear functions brings us to the end of … 

9.4 The Story 

This is the story of the function dynasty: a multi-generational family in the business of 

producing models. We started by wondering how functions came into existence. They arose 

out of sheer necessity: our desire to model the real world. These models could be for simple 

relationships, from density of objects to really intricate models like the theory of general 

relativity. All these models are made possible by the members of the function family.  

At a basic level, all functions do the same thing: they consume input and produce output. If 

that’s all they can do, how can they become so sophisticated? One property that makes 

functions so powerful is their ability to consume another member’s output, producing more 

elaborate models. This is known as function composition, and though we fail to realize it, 

function composition is used heavily in creating intricate models from simple models. This 

ability makes functions quite versatile as a family, because they can collaborate by feeding 

one’s output into the input of another.  

A function usually comes with a counterpart, who can undo what the function does. 

However, this counterpart, called the inverse of a function, may accept to undo only a part 

of the output of the original function. Still, this ability to go from an input to output, and 
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back from output to input, makes functions even more useful. For instance, once we define 

a function for multiplication, we get its inverse, division, naturally. Therefore, these inverse 

functions are quite helpful in solving a common problem that functions face: figuring out 

the input that produced a given output.  

The whole purpose of life for a function is to consume input and produce output. The 

objects that they consume and produce can be as simple as a whole number or as intricate 

as a vector or a matrix. These objects could represent everyday items, such as a pair of 

shoes, to models that can transform objects in N-dimensional space.  

Some members of the function family are used heavily in modeling. When it comes to 

modeling, linear functions always enjoy a special place due to their simplicity. We have met 

linear models, from those that accept only scalars to ones that accept vectors. Their more 

upscale cousins, non-linear models, allow us to more faithfully model the real world. Our 

function toolbox contains rich non-linear models of the real world, including Power, 

Polynomial, Factorial, Trigonometric, Exponential, and Logarithmic models. 

Due to this versatility, functions act as a central pillar in many fields. In particular, 

functions allow us to tie two different fields together — math and computer programming. 

Functions are the underlying tool in computer programming for building computer models. 

Since most real-world models are developed today using computers, functions play an 

integral part in our everyday lives whenever we use a computing device.   

The function that fascinated us the most throughout this book is multiplication. Remember, 

every operator is a function and so is multiplication. One input to multiplication, also 

referred to as the multiplier, determines exactly what happens to the other input. A positive 

scalar multiplier (a positive number) just scales (amplify) the other input. A scalar 

multiplier (a real number) can perform both scaling and reflection (rotation by 1800). A 

complex multiplier (a complex number) can perform both scaling and rotation by any angle 

(in a 2D plane). A matrix multiplier can perform scaling and rotation of any input vector of 

N-dimensions, performing a transformation in N-dimensional space.  Notice that, with 

vectors, multiplication becomes linear combinations, which are sums of simpler linear 

terms. A matrix multiplier can transform an N-dimensional input vector to an 

M-dimensional output vector.  

 

Remember, multiplication doesn’t behave this way by accident. As any other function, it is a 

function (operator) we defined, although it may appear to you as it existed ever since the 

Big Bang. First, we defined multiplication as a function to scale whole numbers. Once we 

encountered negative numbers, we extended it so that multiplication can understand 

“sense”, and hence, can reverse the sense of an input when needed (i.e., can cause 

reflection). Once that resulted in complex numbers, we again expanded its definition so 
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multiplication can rotate objects in a 2D plane. We kept on extending this definition 

because scaling and rotating are fundamental operations we would like to have in our 

toolbox since we need them so often in the real-world. Therefore, once we encountered 

vectors, we needed a function that could do the same thing that multiplication does for real 

and complex numbers. Multiplication could not be trivially extended to serve this purpose. 

Therefore, we had to invent a new function: a linear combination, which is a sum of linear 

terms. That did the job for vectors and matrices. Now, we can use matrices to scale and 

rotate more complex objects like vectors. 

 

From scalar multiplication, we get scalar division, as the inverse function of multiplication. 

By multiplying input by itself, we get power functions. From inverse of power functions, we 

get square roots, cube roots, etc. A sum of power functions produces polynomials, which 

can be thought of as products of linear functions (factors). 

 

One way to realize the importance of multiplication is to see what kind of algebraic 

relationships we can build if we did not have multiplication — i.e., if we only had addition. 

Then, you would only be able to build models like  f (x) = x + x + 3, which are only a subset 

of linear models (linear models with integer coefficients). All other algebraic functions, like 

power functions and polynomials, are made possible by multiplication. That makes 

multiplication vital. Along with addition, multiplication can be placed at the root of the 

function dynasty for algebraic functions.  

 

As fundamental as they may be, multiplication and addition alone cannot give rise to all 

functions we met. There is another important class of functions, known as Transcendental 

functions (e.g., Trigonometric, exponential, logarithmic) that are indispensable for 

modeling the real world. These functions help us model rapid growth, rapid decay, 

waveforms, and rotation with stable, growing, and decaying amplitudes, among many other 

things.  

 

Although algebraic and transcendental functions are two separate families, they are not 

isolated as it first seems. The infinite series, which is basically another function (sum) with 

an infinite number of power terms, is the bridge between them. In practice, especially, 

when we use computers, transcendental functions are approximated using algebraic 

functions (a limited number of algebraic terms of an infinite series). For all practical 

purposes, that places multiplication and addition back at the root of the family tree. 

 

However diverse they may seem, all of these generations of functions are unified by a 

common purpose: to help us model the world around us. 

 

That’s the story of the function dynasty.   
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EPILOGUE 
Algebra is one of the pillars supporting many disciplines in science, engineering, and 

mathematics. By now, you should have a cohesive and intuitive view of algebra. For 

instance, now, you should be well prepared to understand an algebraic model in physics, 

statistics, computer science, or any other field. You should be able to break down any 

complex mathematical model you meet into the simpler models we discussed here. Now 

you should be well equipped to learn the concepts in calculus.  

 

If you were mechanically manipulating symbols without much thought, I hope this book 

helped you build an intuitive understanding about the models we use in math. To achieve 

that end, we took a very different approach to algebra than many textbooks do.  

 

Rather than looking at functions as an abstract mathematical concept, which maps a 

domain to a range, we looked at numerous functions you meet in everyday life. Rather than 

drawing a number-line and defining numbers on that as real numbers, we painstakingly 

explored how we were forced to expand the notion of numbers, if we start with whole 

numbers. Rather than looking at a bunch of unrelated functions, we built up each function 

family, explored relationships among them, and connected them to their inverse and 

reciprocal cousins. Rather than just drawing the graph of the exponential function or the 

sine function, we built them up with analogies of pushup-routines and Ferris wheels that 

showed us how these functions can arise out of familiar activities. Rather than writing 

down a complicated model for something like the Gaussian distribution, we looked at how 

we can build one from simpler models using function composition. Rather than just giving 

the Taylor series expansions of transcendental functions, we gradually built up power 

series from polynomials using the decimal number system as an example. Rather than 

saying that a complex number is a number with a real part an imaginary part, we examined 

what forced us to come up with complex numbers, what they really represented, and their 

connection to vectors. Rather than drawing an arrow on a Cartesian grid and calling that a 

vector, we looked at vectors as geometric objects, and as algebraic objects, finally uniting 

them with linear combinations. Rather than giving a textbook definition of the dot product 

and the cross product between vectors, we took great pains to explore what they really 

meant using multi-dimensional skill sets and rotating doors as examples. Rather than 

introducing a matrix as just a grid of numbers, we spent a lot of time to figure out how 

linear combinations led to matrices, and what role matrices play in extending linear models 

to ones that can consume and produce vectors. 

  

That’s not all. Rather than giving textbook definitions, we looked at fascinating examples 

and analogies for negative multiplication, roots, parametric functions, function inverses, 
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composition, linear combinations, and vectors. Rather than treating subjects like vector 

fields, linear combinations, vector valued functions, and scalar fields as disjoint concepts, 

we unified them under one umbrella, showing their similarities and differences. Rather 

than looking at algebra as endless manipulation of symbols and formulas, we examined its 

practical connection to various real-world models in physics, and expressed many such 

models using computer code.  

 

Math books are usually filled with lots of formalism. We prioritized intuition over 

formalism. Having developed the right intuition, you can get formal definitions of math 

concepts from any textbook, or even from Wikipedia. However, you need to develop an 

intuitive understanding to really appreciate both the beauty and utility of math. Providing 

that intuition is the sole objective of this book.  

 

I hope you enjoyed reading this book. You can obtain the latest copy of this book at 

reintro2algebra.com. If you notice any errors, omissions, typos, or have any comments or 

suggestions, please share them by writing to reintro2algebra@gmail.com. 

 

 

Ruchira Sasanka 

  

http://www.reintro2algebra.com/
mailto:reintro2algebra@gmail.com
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SUPPLEMENT:  PRELUDE TO CALCULUS 
This supplement describes how to look at differential and integral calculus using the 

intuitive framework we developed in the previous chapters.  

OUTPUT VS. CHANGE IN OUTPUT 

In the previous chapters, our main focus was to look at a function as a device for producing 

output from a given input. Sometimes we need to go a step further and understand how 

functions behave when we change input.  

Imagine you want to hike a mountain and 

there are two trails to the top starting from 

the same elevation, as shown on the right. 

One trail (AP) goes up gradually, but the 

other trail (BP) has a steep section where 

you have to climb hundreds of feet vertically. 

Which one would you choose if you want to 

get to the top with the least trouble? Of 

course, the one with gradual ascent. What made up your mind? It was not the height 

(elevation) at a given point on the trail but the impassable steep section. That’s an everyday 

example where we pay attention to the change of a property (elevation in this case) rather 

than the value of that property at a given point. We can model a trail as a function that 

outputs an elevation for a given distance from the start (input). In this mathematical model 

too, we should be able to identify how fast the output changes, if we want to avoid 

impassable sections. 

In many models we build about the real world, we need to know about how output changes 

in addition to the absolute output value for a given input. In particular, we are interested in 

how fast the output changes with respect to input (i.e., the rate of change). For instance, 

when you are driving, your speed is determined by how fast your distance (from a 

reference point) changes, and your acceleration is determined by how fast your speed (or 

more precisely, velocity) changes. If your speed is too high, you can get a speeding ticket 

and if your acceleration is too high, your tires may screech or you could lose control. That’s 

why you cannot simply ignore how fast the output changes. 

The real-world models we build are often dependent on rate of change. For instance, in 

Newton’s famous second law of motion, F = ma, force depends on acceleration, which is the 

rate of change of velocity. Forces are everywhere in our lives. Therefore, rates of change 

are fundamental to our existence and the mathematical models we build. Life without 
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change is boring and if we want to model anything interesting in the real world, we have to 

incorporate change into our models. 

Given that we need to model change, we need operators (functions) that can calculate how 

fast the output changes in a given function. Such operators are known as the differential 

operators. The output of such an operator is known as the derivative.  

The differential operator accepts a function 

as an input and produces another function 

(derivative) as output. Recall from section  

1.10 that operators can do that easily. The 

differential operator is often written as 
𝑑

𝑑𝑥
, 

when it is applied to a function with input x 

( e.g., 
𝑑

𝑑𝑥
[ 𝑓(𝑥) ] ), as shown in the left image of 

the Visual Model. However, you should look 

at it as an operator name, like d_over_dx(  ) or Dx(  ). For instance, if f(x) = 3x, we can apply 

the differential operator as  
𝑑

𝑑𝑥
[ 3𝑥 ],   or d_over_dx( 3x )  or Dx( 3x ). The output function is 

named as f ’(x) (i.e., f prime) as shown in the Visual Model. Again, the apostrophe is part of 

the name and you should think of it has f_prime(x).  

At a given input value of x, to calculate the 

derivative, we change the input by a small 

amount (Δx) and calculate the change in output 

(Δy) as shown on the right. A small change is 

usually denoted by Δ (delta), so delta Δx signifies 

a very small (infinitesimal) change in input at 

input x and Δy signifies the corresponding 

change in output. The derivative is the ratio 

between Δy and Δx. The right image of the Visual Model above captures this view of the 

differential operator.  

The ratio Δy / Δx represents the slope of the curve (more precisely the slope of the 

tangent) at input x. As an example, for the linear model f(x) = 3x, which has a slope 

(gradient) of 3 for all input values, we get  f ’(x) = 3, which is a constant function. In other 

words, for f(x) = 3x, for any given input, the output increases at a rate of 3 – i.e., when you 

increment x by Δx, output rises by 3×Δx. 

The following computer code shows getDerivative function that numerically evaluates 

the derivative of a given function ‘func’ at any given input x. Notice that in programming, a 
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function (like getDerivative) can accept another function (like func) as an input 

argument.  

In getDerivative, we define deltaX (Δx) to be 0.0001 as an example of a small value. Then, 

first we calculate the output value of func at input x and then at input x + deltaX, allowing 

us to calculate the derivative, which is defined as: 

 [ func( x + deltaX ) – func( x ) ] / deltaX.   

Notice that getDerivative calculates the derivative only for a single input value x. If we need 

to calculate the derivative for a sub-domain of func, we need to call it for all points of that 

sub-domain. That is achieved using a for-loop in the last box. There, we evaluate the 

derivative for x values between 10 and 20. Note that this “for loop” species a step size so 

that in each iteration, x is incremented by stepX (rather than the default step size of 1) 

giving us x values such as 10.0, 10.0005, 10.001, 10.0015, … etc. (since stepX =0.0005). We 

use the function defined in the middle box (myFunc) as the function to find the derivative of. 

We can use any expression in that function. Currently, we have a quadratic polynomial as 

the function to differentiate. In the last box, after we find the derivative (y_prime), we can 

print x and y_prime and use that to generate a plot (e.g., by using a spreadsheet). This is 

how your scientific calculator calculates the derivative of a given function and draws it on 

screen. 

 

function getDerivative( func, x )   // finds derivative at x 
{ 
 deltaX = 0.0001      // small delta value, Δx 
   
 out_x = func(x)    // output at input x 

 out_x_delta = func(x + deltaX) // output at input x+Δx 
 deltaY = out_x_delta – out_x  // Δy = output difference 
 slope = deltaY / deltaX   // slope = Δy/Δx 
 return slope 
} 
 

stepX = 0.0005     // small step value 
 
for x=10 to 20, stepX    // for loop with step size 
{          
 y_prime = getDerivatie(myFunc, x)  // y’ = d/dx[ myFunc(x) ] 

print( x, y_prime )   // print (x, y’) 
} 

function myFunc( x )     // function to differentiate 
{ 
 return 3*x*x + 2x + 1   // 3x2  + 2x + 1 
} 
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Notice that since f ’(x) is a function, we can reapply the differential operator to it to produce 

f ’’(x), which is called the 2nd derivative. We can extend this process to 3rd, 4th, and nth 

derivative.  Can you extend the above computer code by adding another function, 

get2ndDerivative(), to generate the 2nd derivate of a given a function and input value?  

Hint: you always need two input values to calculate a difference, so you need to calculate 

f ’(x) and f ’(x+ Δx) in order to calculate the 2nd derivative, f ’’(x). 

DIFFERENTIATION AND INTEGRATION AS INVERSE OPERATIONS 

Remember that whenever we talked about 

an operator before, we also talked about its 

inverse – because for a given function, we 

also need to find the input for given output 

as we discussed ad nauseum in Section 2.3. 

That’s true with the differential operator 

too. The inverse operator of the differential 

operator is the integral operator (and vice 

versa). The integral operator is usually 

denoted by ∫ sign4. Again, it would be more 

intuitive to write it as integral(  f(x)  ). This 

inverse relationship is shown in the left 

image of the Visual Model. Notice that the 

integral actually produces a family of 

functions labeled as f(x) + c, where c is a 

constant. This is because if we input function f(x) + c as an input to the differential operator, 

it still produces the same output f ’(x), because a constant has a slope of zero. Since the 

differential operator produces the same output for a family of input functions, the integral 

operator outputs the same input family.  

As we know, the differential operator calculates f ’(x), the rate of change of output at input 

x, by dividing the change in output by the change in input (i.e., Δy/Δx). Therefore, the 

integral operator, being the inverse of differential operator, calculates the original change 

in output (Δy) by multiplying f ’(x), which is Δy/Δx,  by the change in input (Δx) for the same 

input x, as shown on the right Visual model above.  As we will see shortly, by adding all 

those Δy values over a range of input (which is represented by the Sigma or “summation” 

operator in the Visual Model), we can recover the original output y. 

 
4 More precisely, we need to indicate we are integrating with respect to variable x, but we omit it here for 
brevity. 
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If we know the change in output (Δy) at a given 

input x, how do we calculate y value (the original 

output of f(x)) at x? To do that you need to add Δy 

values sequentially starting from a known input 

and output pair (say x0 and y0) as shown on the 

right. This figure shows that if we know the value 

of y0 (at input x0) then we can add Δy1, and Δy2 to 

get y. We can do this summation repeatedly to 

find the required y value. That’s why integration is often viewed as a summation. In fact, 

the integral sign is an elongated “S”, indicating summation. The right Visual Model above, 

shows this summation of all Δy values to produce y. 

The following figure summarizes the 

relationship between differentiation and 

integration. The top figure shows how we can 

calculate the derivative for f(x) at input x – i.e., 

we find Δy for given Δx and take the ratio. If we 

plot the values of those ratios, we get the graph 

at the bottom, which is f ’(x). Therefore, on the 

bottom graph, for the same input value x, we get 

output value Δy/Δx (because this graph 

represents the derivative of the top curve). 

Therefore, the area of the orange rectangle gives 

us Δy/Δx × Δx, which evaluates to Δy (area of a 

rectangle is its height multiplied by its width). 

Once we know Δy, how do we calculate y? As we 

saw above, we need to add Δy values starting 

from a known position. For this example, we see 

that f(0) = 0. Therefore, we can start the process 

at x=0 and sum all of the resulting orange 

rectangles to get the output y value of function 

f(x). This sum is represented by the green area because, if we keep on adding all rectangles 

under the f ’(x) curve from x=0 to x, we get the green area. This also shows how integration 

can be used to find the area under a curve. We do that by repeatedly adding rectangles like 

the orange rectangle (Δy areas) shown above. This is the reason why integration 

represents a summation (sum of Δy rectangles) and often used in finding area of surfaces 

(and volumes of solids). 
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The computer code for calculating the numerical integral 

of a given function over a given input range (a to b) is 

given below. The given algorithm calculates the integral by 

finding the area under a curve, as shown on the right. 

There, we add up the area of each orange rectangle from 

input values a to b, to calculate the area of the blue region. 

Similarly, the function getIntegral accepts a function 

func, along with the start and end value of the input range 

(a and b). First, we initialize the running sum (area_sum) 

to zero to indicate that we have not calculated any area under the curve yet. Then, we 

change x from the start of the input range (a) to end of the input range (b) with a step size 

of deltaX. For each of those input x values, we calculate the output y value, and then 

calculate the area of the narrow rectangle (the orange rectangle above) with height y and 

width deltaX. Then, we add that area of rectangle to the running sum (area_sum). After we 

are done with the loop, we return area_sum, which is the total area under the curve of 

function ‘func’, for the input range from a to b. If we wanted to graph the integral (e.g., in 

the case of a scientific calculator) we could do so by printing pair (x, area_sum) in the loop. 

 

function getIntegral( func, a, b )   // get integral from a to b 
{ 
 deltaX = 0.0001      // small delta value, Δx 
 area_sum = 0.0    // area under the curve 
   

for x=a to b, deltaX   // loop a to b with step Δx 
{          
 y = func(x)    // get output y for inp x 

area = y * deltaX   // area of small rectangle 
 area_sum = area_sum + area // add to total area 
} 
 
return area_sum    // return area under curve 

} 

        
y = getIntegral(myFunc, 0, 5)   // y = integral(myFunc,0,5) 
print( y )       // print integral  

function myFunc( x )     // function to integrate 
{ 
 return 3*x*x + 2x + 1   // 3x2  + 2x + 1 
} 
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SUMMARY 

Since this is not a book on calculus, we are not going to go deep and learn how to calculate 

the derivative and integral of different functions. When you study Calculus, you should 

remember to organize the derivatives and integrals using the function families we learned 

in Chapter 4 (i.e., note the derivative and integral of each function family, its inverse and 

reciprocal). 

I hope this short introduction helps you to organize your thoughts about how to think 

about calculus – just as another set of useful operators that help us build models about the 

real world. Once you look at differentiation and integration as applying operators (i.e., 

functions) and treat them as inverse functions of each other, all the intuition we built on 

functions can be readily applied to them.  
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A 

abstraction, 60, 179 

algebraic function, 148 

algebraic vector, 205, 220 

algebraic vectors, 197 

amplitude, 124 

Amplitude Modulation, 123 

angular frequency, 121, 167 

arccos, 128 

arcsine, 128 

area under a curve, 261 

array, 141 
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base, 94 

basis vectors, 196 

bell curve, 132 

bias, 85 

binary number, 143 

Boyle’s Law, 111 

C 

calculus, 257 

capacitor, 167, 169 

carrier wave, 124 

Cartesian basis, 196 

Celsius, 84 

Coefficient Matrix. See Matrix 

Multiplier 

column view of a matrix, 237, 241 

complex number, 157, 246 

complex plane, 157 

complex roots, 162 

component representation, 197 

conjugate, 158, 162 

constant term, 82, 85 

convex lens, 62 

cosecant, 120, 129, 136 

cosine, 119, 147, 148 

Coulomb’s Law, 113 

cross product, 192 

cross product., 190 

cube root, 102 

cubic model, 90 

current, 73 

D 

Decibels, 108 

decimal number, 143 

dependent variable, 16 

derivative, 145, 258, 260 

differential operator, 258 

differentiation, 261 

directly proportional, 75 

domain, 24 

dot product, 186, 198, 223, 247 

E 

electrical power, 79 

equation, 16, 40, 41, 47, 51, 53, 54 

Euler’s Identity, 172 

evaluation, 22 

even symmetry, 80 

exp, 109, 147 

exponential decay, 115, 136 

exponential growth, 97 

exponential model, 94, 105, 131, 

136 

exponentiation, 66 

expression, 19, 22 

F 

factor, 92 

factorial, 129, 136, 147 

factors, 88 

Fahrenheit, 84 

Ferris wheel, 117, 169, 174 

for loop, 139, 140 

force field, 209 

Fourier series, 149, 167 

Fourier Transform, 51, 174, 176 

frequency, 117, 120, 167 

Frequency Modulation, 125 

function, 13 

function composition, 27, 28, 31, 

32, 33, 43, 44, 107, 128, 133, 

135, 232, 234, 239 

function decomposition, 32 

function definition, 17 

function evaluation, 21 

Fundamental Theorem of Algebra, 

91, 161 

G 

Gaussian Distribution, 132 

Gaussian Elimination, 243 

geometric vectors, 197 

gradient, 209, 258 

gradient field, 209 

graph, 23, 163 

Gravitational Law, 113 

H 

half-life, 116 

hyperbolic function, 136 

I 

Ideal Gas Law, 76, 111 

identify function, 112 

identity function, 73, 100, 101 

identity matrix, 238 

identity transformation, 238 

if-else statement, 95 

imaginary number, 155 

impedance, 167, 168 

independent variable, 16 

inductor, 167, 168 

infinite series, 142 

integral operator, 260 

integration, 261 

inverse, 42, 99, 260 

inverse square model, 113 

inversely proportional, 109 

irrational number, 68, 144 
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L 

Laplace Transform, 51, 176 

linear combination, 86, 91, 122, 

136, 195, 197, 200, 205, 218, 

220, 223, 231, 242, 247, 249 

linear model, 83, 103 

linear term, 73, 110 

linear transformation, 237, 248 

linear-map, 248 

logarithmic model, 105, 106, 136 

logistic growth model, 135 

M 

Maclaurin series, 144 

magnifier, 15, 26, 62, 73 

mathematical relation, 12 

matrix, 221, 246 

inverse, 243 

matrix multiplication, 231, 232, 

234, 238, 240 

matrix multiplier, 225, 248 

models, 71 

moment, 190 

multiplicative inverse, 110, 243 

N 

natural exponential function, 98 

natural logarithm, 106 

Normal Distribution, 132 

O 

odd symmetry, 82 

Ohm’s Law, 73 

operators, 26 

P 

parameter, 34, 213 

period, 117 

periodic functions, 117, 149 

permutations, 130 

phase shift, 120, 167 

phasor, 168 

polar representation, 173 

polynomial, 82, 90, 91, 104, 114, 

138, 161 

position vector, 208 

power function, 71, 131, 136 

power series, 143 

pressure, 77, 111 

Q 

quadratic formula, 104 

quadratic function, 87 

quadratic term, 78 

R 

radians, 120 

radioactive decay, 115 

range, 24 

rate of change, 257 

rational numbers, 61 

real number, 68, 246 

reciprocal relationship, 109 

recursion, 96, 130, 131 

resistance, 73, 111, 166 

Richter scale, 108 

root, 52, 54, 89 

row view of a matrix, 237 

S 

scalar, 179 

scalar coefficient. See scalar 

multiplier 

scalar field, 207, 208, 251 

scalar multiplier, 200, 225, 247, 248 

scalar product. See dot product 

scientific notation, 66 

secant, 129, 136 

second law of motion, 75, 185 

sense, 58 

series, 90 

Sigma notation, 138, 142 

sign, 58 

signal, 128 

sine, 118, 147 

slope, 258 

solutions, 40, 53 

square root, 67, 101 

standard basis, 196 

summation, 261 

symmetry, 86 

system of linear equations, 242 

T 

tan, 120 

Taylor series, 149 

temperature, 77, 206 

Tensor, 246 

term, 19, 22, 72 

torque, 190 

transcendental function, 148 

transformation matrix, 238 

trigonometric model, 123, 136 

U 

universal gas constant, 76 

V 

variable, 16 

vector, 179, 220, 246 

vector coefficient, 225 

vector field, 209, 213, 251 

vector multiplier, 201, 225, 248 

vector product. See cross product 

vector valued function, 213, 214 

Visual Model, 14 

voltage, 73, 169 

volume, 77 

W 

waveform, 126, 149 

whole number, 56, 142, 143 

Z 

zeros, 52 
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